摘要:锂 - 硫硫(Li – S)电池由于其众多优势而受到了广泛的关注,包括高理论特异性能力,高能量密度,在阴极材料中的硫磺储量丰富的储量和低成本。li – s电池还面临着几个挑战,例如硫的绝缘性能,充电和排放过程中的体积膨胀,多硫化物穿梭和树突状晶体生长。在这项研究中,开发了多孔的多位多站点硅藻石的氧化石墨烯材料和泛纤维膜的复合材料,以获得多孔且高温的GO/二烷酸/多丙烯酸甲硝基硝基硝基硝基硝基硝基硝基功能分离器(GO/de/PAN),以提高LI-ss catteries的电化学性能。结果表明,使用GO/DE/PAN有助于抑制硫化锂(LPS)穿梭锂并改善分离器的电解质润湿以及电池的热稳定性。使用GO/DE/PAN电池的初始放电能力在0.2 C时高达964.7 mAh g -1,在100个周期后,可逆容量为683 mAh g -1,库仑效率为98.8%。改进的电化学性能可能归因于硅藻土的多孔结构和氧化石墨烯的分层复合材料,这些结构可以结合物理吸附和空间位点的耐药性以及化学排斥性,以抑制LPS的航天飞机效应。结果表明,go/de/pan具有在Li – S电池中应用以提高其电化学性能的巨大潜力。
随着通信技术的升级和量子计算的飞速发展,经典的数字签名方案面临着前所未有的挑战,对量子数字签名的研究势在必行。本文提出一种基于五量子比特纠缠态受控量子隐形传态的多代理签名方案。该方案采用量子傅里叶变换作为加密方法对消息进行加密,与量子一次一密相比提高了量子效率。采用满足量子比特阈值量子纠错要求的五量子比特最大纠缠态作为量子通道,保证了方案的稳定性。安全性分析表明,该方案具有不可伪造、不可否认的特点,能够抵抗截获重发攻击。
众所周知,连贯的光是可实现的最稳定的经典光,它表现出泊松统计分布。shot噪声代表了这种固有的随机性的极限,并与使用pois-sonian光源发射的光子的时间分离相关。因此,一个更正常或次佛森的光子流揭示了基础辐射过程的量子性质。1在任何给定时间发出不超过一个光子的完美常规光源,称为单光子源(SPS),代表了各种量子技术的必不可少的构建块,包括量子计算方案,玻色子计算方案,玻色子采样,精确的Metrology,Precision Metrology,以及安全的通信应用以及量子密钥分布,例如量子密钥分布。2–6
量子纠缠作为一种重要资源是量子力学最显著的特征之一,在量子信息论、量子隐形传态[1]、通信和量子计算[2,3]中都发挥着核心作用。由于其基础性作用,在分离子系统之间产生纠缠态是一个重要课题。近年来,已提出了多种产生纠缠态的方法,其中之一就是 Jaynes-Cummings 模型 (JCM)。JCM 解释了量化电磁场和原子之间的相互作用 [4]。JCM 是一个简单但适用的工具。在过去的二十年里,人们致力于将 JCM 应用到量子信息[5-7]和量子隐形传态[8]中。由 JCM 诱导的纠缠态已被用作量子通道 [9]。 Zang 等人 [10] 利用两能级原子与大失谐单模腔场相互作用,将二分非最大纠缠态转变为 W 态。原子与单模电磁腔场相互作用的纠缠动力学已被研究 [11]。由于 JCM 在量子光学中的重要性,它已被扩展
回想一下位移算符如何变换光子振幅算符,ˆ D ( α )ˆ a † ˆ D † = ˆ a † − α ∗ ,状态可以写成位移和创造的连续
量子模拟的复杂性并非仅仅源于纠缠。量子态复杂性的关键方面与非稳定器或魔法有关 [1]。Gottesman-Knill 定理 [2] 表明,即使是一些高度纠缠的状态也可以被有效地模拟。因此,魔法是一种资源,代表准备量子态所需的非 Clifford 操作(例如 T 门)的数量。我们使用稳定器 R´enyi 熵 [3] 证明,与具有零动量的状态相比,具有非零晶格动量的退化量子多体基态允许魔法的增量 [4]。我们通过分析量化了这一增量,并展示了有限动量不仅增加了长程纠缠 [5],还导致魔法的变化。此外,我们还提供了 W 状态及其广义(量子信息界经常讨论)与受挫自旋链基态之间的联系。
量子隐形传态的理想实现依赖于获得最大纠缠态;然而,在实践中,这种理想状态通常是无法获得的,人们只能实现近似隐形传态。考虑到这一点,我们提出了一种量化使用任意资源状态时近似隐形传态性能的方法。更具体地说,在将近似隐形传态任务定义为对单向局部操作和经典通信 (LOCC) 信道上的模拟误差的优化之后,我们通过对更大的两 PPT 可扩展信道集进行优化来建立此优化任务的半确定松弛。我们论文中的主要分析计算包括利用身份信道的酉协方差对称性来显著降低后者优化的计算成本。接下来,通过利用近似隐形传态和量子误差校正之间的已知联系,我们还应用这些概念来建立给定量子信道上近似量子误差校正性能的界限。最后,我们评估各种资源状态和渠道示例的界限。
本文感兴趣的特定量子态是两个相位相反的相干态的叠加,通常称为(薛定谔)猫态。猫态可用作量子计算机中的逻辑量子比特基础 [2, 3]。它们还可以用作干涉仪的输入态,干涉仪能够以比光波长通常施加的限制更高的精度测量距离 [4]。仅通过幺正演化将单个相干态转换为猫态需要很强的非线性。此外,猫态对光子吸收的退相干极为敏感。出于这些原因,平均包含多个光子的猫态仅在腔量子电动力学实验中产生,在该实验中,原子与限制在高精度光学腔内的电磁场相互作用 [5, 6]。在这种实验中,腔将光学模式限制在一个很小的体积内,因此
人们从物质分类的角度发现了许多全新的拓扑电子材料,包括拓扑绝缘体[5–8]和拓扑半金属[9]。与此同时,量子力学波与经典波的类比启发人们将凝聚态物理学中的许多概念推广到经典波系统,如电磁波、声波和机械波系统。直观地,人们可以将经典波的控制方程(例如电磁波的麦克斯韦方程)转化为哈密顿量。按照这种方法,最初为量子力学波提出的拓扑相最近已在各种经典波系统中实现,[10–17],从而实现了拓扑激光器[18–21]、鲁棒光延迟线[22]和高质量片上通信等许多实际应用。 [23,24] 最近的进展进一步将拓扑态从厄米波系统扩展到非厄米波系统,