混合离子电容器 (HIC) 是一种快速发展的技术,它结合了电池和 SC 的最佳特性,可在长时间内以高速率产生巨大的能量密度。根据之前的研究,这些 HIC 可以提供 60 到 200 W h kg 1 之间的能量(考虑到活性材料的质量),优于传统的 SC,它们的主要强度在 200 到 20 000 W kg 1 之间,大大高于电池。20,21 与锂(0.0017%)相比,钠(Na,2.6%)和钾(K,2.1%)在地壳中储量丰富,使它们成为促进电池发展的有希望的替代品。22,23 此外,K 和 Na 都属于元素周期表中锂之后的同一组,表现出相似的物理化学性质。因此,对 Na + /K + 存储技术的研究正在获得发展势头,为成功的可再生能源存储系统商业化铺平了道路。 24 K + 存储装置之所以受到关注,是因为它们的工作电压比 Na 离子存储装置高,电解质中的离子电导率也更出色。例如,K/K + 氧化还原对的电位为 2.93 V(相对于标准氢电极 (SHE)),低于 Na/Na +
第63届实践研讨会“人工智能的基础”主办方:日本岩土工程学会关西支部(公益社团法人)岩土工程领域ICT应用推进研究委员会近年来,人工智能渗透到各个领域,越来越趋向实用化。然而现实情况是,很多人对于如何实现人工智能知之甚少。 因此,今年的实践研讨会主要针对那些从未研究过人工智能的人,以及那些在工作中负责人工智能但对其实现方式不太熟悉的人。它将包括帮助学生了解人工智能基础知识的讲座,以及使用人工智能对岩石标本进行分类的实践练习。通过练习,你将学习如何设置 Python 环境、如何运行它以及如何评估结果。本内容以推进岩土工程领域ICT应用研究委员会举办的AI研究会为基础。我们期待您的参与。 时间:2021 年 9 月 14 日(星期二)举办方式:关西大学 100 周年纪念馆特别会议室(根据新冠肺炎疫情形势,研讨会将通过 Zoom 在线举行)(大阪府吹田市山手町 3-3-35)交通方式:从阪急“关大前”站南口步行约 3 分钟详情请参阅 http://www.jgskb.jp/japanese/gyoujipdf/2021/20210914jitugi-seminar_kaijou.pdf 内容
溶于电解质中的高活动嘴唇与Li金属阳极化学反应。 [9] Lips和Li Metal Anodes之间的寄生反应在固体电解质中(SEI)中产生不利的成分,并通过连续腐蚀同时破坏SEI。 [10]因此,无物质的沉积被加重,有限的LI储层被耗尽,这会在循环和LI-S电池快速故障期间诱导不稳定的Li金属阳极。 [11]此外,寄生作用和阳极不稳定性在降级条件下严重加剧,例如使用超薄的李阳极和高岩载的硫磺阴极,这些硫磺是为了构建高能量密度LI – S电池所必需的。 [12]因此,抑制嘴唇和Li金属阳极之间的植物反应是稳定Li Metal Anodes并延长Li – S Batteries的循环寿命的先验性。 已经提出了各种策略来减轻嘴唇和Li金属阳极之间的寄生反应。 [13]保留溶剂的电解质在抑制嘴唇的疾病中特别有效,从而缓解了Li Metal Anode腐蚀。 [14]溶于电解质中的高活动嘴唇与Li金属阳极化学反应。[9] Lips和Li Metal Anodes之间的寄生反应在固体电解质中(SEI)中产生不利的成分,并通过连续腐蚀同时破坏SEI。[10]因此,无物质的沉积被加重,有限的LI储层被耗尽,这会在循环和LI-S电池快速故障期间诱导不稳定的Li金属阳极。[11]此外,寄生作用和阳极不稳定性在降级条件下严重加剧,例如使用超薄的李阳极和高岩载的硫磺阴极,这些硫磺是为了构建高能量密度LI – S电池所必需的。[12]因此,抑制嘴唇和Li金属阳极之间的植物反应是稳定Li Metal Anodes并延长Li – S Batteries的循环寿命的先验性。已经提出了各种策略来减轻嘴唇和Li金属阳极之间的寄生反应。[13]保留溶剂的电解质在抑制嘴唇的疾病中特别有效,从而缓解了Li Metal Anode腐蚀。[14]
锂硫 (Li-S) 电池被视为近期下一代锂电池的有希望的候选材料之一。然而,这些电池也存在某些缺点,例如由于多硫化物的溶解导致充电和放电过程中容量衰减迅速。本文成功合成了硫/金属氧化物 (TiO 2 和 SiO 2 ) 蛋黄壳结构,并利用该结构来克服这一问题并提高硫阴极材料的电化学性能。使用扫描电子显微镜 (SEM)、透射电子显微镜 (TEM) 和 X 射线衍射 (XRD) 技术对制备的材料进行了表征。结果表明,使用硫-SiO 2 和硫-TiO 2 蛋黄壳结构后电池性能显著提高。所得硫-TiO 2 电极具有较高的初始放电容量(>2000 mA h g −1 ),8 次充电/放电循环后的放电容量为 250 mA h g −1 ,库仑效率为 60% ,而硫-SiO 2 电极的初始放电容量低于硫-TiO 2 (>1000 mA h g −1 )。硫-SiO 2 电极在 8 次充电/放电循环后的放电容量为 200 mA h g −1 ,库仑效率约为 70%。所得恒电流结果表明硫-TiO 2 电极具有更强的防止硫及其中间反应产物溶解到电解质中的能力。
以下相关设备、部件和材料: a. 经过选择或改造以增强其对人类或动物造成伤亡、损坏设备或破坏农作物或环境的效力的“生物制剂”或放射性材料; b. 化学战(CW)剂,包括: 1. 化学战神经剂: a. O-烷基(等于或小于 C 10,包括环烷基)烷基(甲基、乙基、正丙基或异丙基)-氟膦酸酯,例如: 沙林(GB):O-异丙基甲基氟膦酸酯(CAS 107-44-8);和 梭曼(GD):O-频哪基甲基氟膦酸酯(CAS 96-64-0); b. : O-烷基(C 10 或以下,包括环烷基)N,N-二烷基(甲基、乙基、正丙基或异丙基)磷酰胺氰酸酯,例如:塔崩(GA):N,N-二甲基磷酰胺氰酸酯(CAS 77-81-6);c. O-烷基(H 或 C 10 或以下,包括环烷基)S-2-二烷基(甲基、乙基、正丙基或异丙基)-氨基乙基烷基(甲基、乙基、正丙基或异丙基)硫代膦酸酯及相应的烷基化和质子化盐,例如:VX:O-乙基 S-2-二异丙基氨基乙基甲基硫代膦酸酯 (CAS 50782-69-9);2. CW 发泡剂:a.硫芥子气,例如:1. 2-氯乙基氯甲基硫化物(CAS 2625-76-5);2. 双(2-氯乙基)硫化物(CAS 505-60-2);3. 双(2-氯乙硫)甲烷(CAS 63869-13-6);4. 1,2-双(2-氯乙硫)乙烷(CAS 3563-36-8);5. 1,3-双(2-氯乙硫)-正丙烷(CAS 63905-10-2);6. 1,4-双(2-氯乙硫)-正丁烷(CAS 142868-93-7);7. 1,5-双(2-氯乙硫)-正戊烷(CAS 142868-94-8); 8. 双(2-氯乙硫基甲基)醚(CAS 63918-90-1); 9. 双(2-氯乙硫基乙基)醚(CAS 63918-89-8); b. 路易氏剂,例如: 1. 2-氯乙烯基二氯胂(CAS 541-25-3); 2. 三(2-氯乙烯基)胂(CAS 40334-70-1); 3. 双(2-氯乙烯基)氯胂(CAS 40334-69-8); c. 氮芥子气,例如: 1. HN1:双(2-氯乙基)乙胺(CAS 538-07-8); 2. HN2:双(2-氯乙基)甲胺(CAS 51-75-2); 3.HN3:三(2-氯乙基)胺(CAS 555-77-1);
癌症是一种死亡率极高的可怕疾病,在当今社会,每年夺走成千上万人的生命。传统的癌症疗法因其严重的副作用和缺乏特异性而臭名昭著。在肿瘤发展的背景下,癌症特征代表癌细胞逐渐获得的基本生物学特性。一种有前途的抗癌方法是同时针对多种癌症特征。植物衍生的天然化合物因其结构多样性和最小的毒性而成为开发新型、更有效的抗癌疗法的有前途的资源库。多年来,大蒜 (Allium sativum) 因其已证实的抗癌特性而备受关注。大蒜中的多种生物活性成分,包括有机硫化合物、黄酮类化合物和酚类化合物,对癌细胞表现出不同的作用。这篇综述论文的目的是全面阐明大蒜抗癌作用的机制。本综述中研究阐明的发现不仅有助于更深入地理解大蒜的抗癌特性,而且还为研究人员和医疗保健从业者配制基于天然大蒜化合物的增强型抗癌药物奠定了坚实的基础。
水”(Brunner等,2012; Wankel等,2014)和δ34s so4(t),δ34s so4(0),δ18o so4(t)和δ18O SO4(0)227
摘要。所有碳氢化合物(HC)储层泄漏到一些液体。少量HCS逃脱了海上储物,并通过将有机贫困海洋沉积物朝向表面迁移时,这些HC通常在到达沉积物 - 水界面之前被微生物完全代谢。然而,这些低且通常没有注意到的向上的hc伏布仍然影响着周围沉积物的地球化学,并潜在地刺激了浅层地下环境中微生物种群的代谢活性。在这项研究中,我们研究了如何局部的HC渗漏,以使SW Barents Sea的有机贫困沉积物中的微生物硫酸盐减少,重点关注三个采样区域,上面有两个已知的HC沉积物和两个原始海底参考区。对50个重力核心的分析显示,预测的硫酸盐耗尽深度有可能变化,范围从海藻下方3到12 m。我们观察到几乎线性孔隙水硫酸盐和碱度原状,沿硫酸盐还原的低速率(PMOL CM 3 d-1)。segage-sodic和元共转录组数据表明甲烷(AOM)的代谢性和活性对硫酸盐还原和氧化作用。功能标记基因(APRAB,DSRAB,MCRA)的表达揭示了通过硫酸盐还原硫酸盐的脱硫杆菌和甲烷 - 可营养的ANME-ANME-ANME-1古细菌的代谢,在沉积物中HC痕迹维持了HC痕迹。此外,在与AOM过程的同时,我们发现lokiarchaeia和
摘要:近年来,从“一种分子、一个靶点、一种疾病”到“多靶点小分子”的新兴范式转变为药物发现开辟了一条巧妙的道路。这一想法已被用于研究针对前所未有的 COVID-19 大流行的有效药物分子,该大流行已成为目前最大的全球健康危机。从临床试验中的药物中认识到有机硫化合物对抗 SARS-CoV-2 的重要性,我们选择了一类对 SARS-CoV 有效的有机硫化合物,并研究了其与 SARS-CoV-2 的多种蛋白质的相互作用。一种化合物对病毒的五种蛋白质(结构和非结构)表现出抑制作用,即主要蛋白酶、木瓜蛋白酶样蛋白酶、刺突蛋白、解旋酶和 RNA 依赖性 RNA 聚合酶。因此,这种化合物成为治疗这种恶性疾病的潜在候选药物。这项工作中进行的药代动力学、ADMET 特性和靶标预测研究进一步激发了该化合物的多功能性,并敦促未来对 SARS-CoV-2 进行体外和体内分析。