由于其高理论能量密度,抽象锂硫电池被认为是能源存储设备的有前途的候选者。提出了各种方法,以打破阻止Li-S电池实现实际应用的障碍。最近,研究人员认可了极性材料与多硫化物之间强烈的化学相互作用的重要性,以提高LI-S电池的性能,尤其是在班车效应方面。极性材料与非极性材料不同,由于其内在的极性而没有任何修饰或掺杂的多硫化物相互作用,从而吸收了极性多硫化物,从而抑制了臭名昭著的穿梭效应。此处审查了LI-S电池极性材料的最新进展,尤其是化学的极线相互作用对固定溶解的多硫化物的效果,并且讨论了极性材料的固有性能与LI-SCTURTIES的电化学性能之间的关系。极性材料,包括阴极中的极性无机物和极性有机物作为LI-S电池的粘合剂。最后,还提出了LI-S电池中使用的极性材料的未来方向和前景。
•基于约翰·克尔斯蒂安·里尔(Johann Chrstian Reil)在1809年的最初发现的灌肠或岛屿岛,是淹没的(隐藏的)部分(隐藏的)部分(隐藏的)部分在硫磺外侧的地面上。它在周围的皮质区域过度时才可以看到,而sul又可以看到libs lips sul sul sul taul taul taul taull the Brain的表面。它的形状是三角形的,并被沟周围环绕,除圆形的圆形沟在其顶点下方,但在其顶端被称为Limen Insulae,它与前穿孔物质是连续的。
摘要:锂硫电池(LSB)是最有希望的下一代电池技术之一。第一个原型细胞比常规锂离子电池(LIB)显示出更高的特异能量,并且活性材料具有成本效益且普遍丰富。然而,Li-S电池仍然遭受了几个局限性,主要是周期寿命,细胞的频率以及缺乏组件生产价值链。由于该电池系统基于复杂的转换机制,因此电解质起着关键作用,不仅是针对特定能量的,而且还起着速率能力,循环稳定性和成本。在此,我们报告了基于乙二醇 - 乙酰溶剂的电解质,四甲氧基糖(TEG)和四甲氧基糖糖(TMG)。这些溶剂之前已经检查了超级电容器和Libs,但从未对LSB进行研究,尽管它们表现出了一些有益的特性,并且由于它们是几种化学物质的前体,因此已经建立了生产价值链。通过在TXG:DOL溶剂混合物中调节溶剂比和LITFSI浓度来建立一个专门适应的电解质组成。所获得的电解质显示出长的循环寿命以及较高的库仑效率,而无需使用Lino 3,这是一种正常导致细胞通信和安全问题的组件。此外,还进行了多层Li-S袋细胞中的成功评估。电解质得到了彻底的表征,并讨论了其硫转化机制。
本文介绍了锂硫 (Li-S) 储能电池的应用,同时展示了几种缓解其电化学挑战的技术的优缺点。无人机、电动汽车和电网规模储能系统是 Li-S 电池的主要应用,因为它们成本低、比容量高、重量轻。然而,多硫化物穿梭效应、低电导率和低库仑效率是 Li-S 电池面临的关键挑战,导致体积变化大、树枝状生长和循环性能受限。固态电解质、界面夹层和电催化剂是缓解这些挑战的有前途的方法。此外,纳米材料能够改善 Li-S 电池的动力学反应,这是基于纳米粒子的几种特性,将硫固定在阴极中,稳定阳极中的锂,同时控制体积增长。考虑到基于可再生能源的环保系统,Li-S 储能技术能够满足未来市场对高功率密度、低成本的先进充电电池的需求。
并非 80 年代的锂金属 首次尝试制造带有锂金属阳极的电池是在 20 世纪 80 年代。这些尝试未能抑制锂枝晶或电阻副产物的形成,这些副产物要么导致危险的操作条件,要么缩短循环寿命。因此,该技术从金属锂发展到锂离子 (Li-ion) 电池。Sion Power 通过开发一种多方面的方法来保护锂金属阳极,成功克服了困扰历史锂金属化学的问题。
10:20 argyrodite固体电解质作为离子导体和活性材料前体在锂 /硫磺固体固体电池中的双重作用KonradMünch,Justus-liebig-universitätgiessen< / div>
抽象目的:与植入物相关的感染代表了导致发病率和死亡率增加的重要并发症。确定引起感染的微生物剂对于成功治疗至关重要。尽管周围关节感染(PJIS)随着时间的推移而发生的发生率,但尚无100%灵敏度的诊断测试来准确识别这些感染。本研究的目的是确定将超声处理与Dithiothreitol(DTT)相结合是否提高了诊断植入物相关感染的准确性和敏感性。方法:具体来说,本研究包括30名因怀疑感染而因植入物去除的患者。植入物分为两个段:使用超声处理方法处理一个段,另一种是通过组合DTT和超声处理来处理的。结果:对于合并组而言,平均值为81.17 +/- 67.53 cfu/ml,对于组合组,平均值为109.7 +/- 62.78 cfu/ml。结论:我们的研究结果表明,DTT和超声处理的组合增加了菌落数量约为28.53 CFU/ML,这增强了检测到骨科植入物相关感染的可能性。
摘要:在阴极上多硫化物的穿梭和阳极锂树突的不可控制的生长限制了锂 - 硫(Li -s)电池的实际应用。在这项研究中,设计和合成的镍 - 二二烯)和富含N的三嗪中心(即NIS 4-TAPT)的镍 - 双(二硫烯)和富含N的三氮中心(即NIS 4-TAPT)的金属配位3D共价有机框架(COF)。NIS 4中的丰富的NI中心和N位点可以大大增强多硫化物的吸附和转化。同时,Ni -bis(二硫烯)中心的存在使Li阳极均匀的Li成核使Li成核抑制了Li dendrites的生长。这项工作证明了整合催化和吸附位点的有效性,以优化宿主材料与氧化还原活性中间体之间的化学相互作用,从而有可能促进金属协调的COF材料的合理设计用于高性能二级电池。■简介
Li-S 电池与锂离子电池相比具有显著优势,但由于多硫化物穿梭导致循环寿命较短,因此受到阻碍。先进材料公司 Lyten 开发了新型 3D Graphene™ 材料,该材料具有机械柔性和导电框架以及分层多孔结构,旨在潜在地限制硫和多硫化物并减轻多硫化物穿梭。Lyten 3D Graphene™ 材料在 Li-S 电池中表现出比商用纳米碳更高的硫利用率,并且与 Lyten 新的受保护锂阳极、先进电解质和多功能隔膜相结合,使 Li-S 电池的比能与当前的锂离子电池相当(~250 -275 Wh/kg)。然而,循环寿命相对较短,纽扣电池在 100% DOD、C/3 下循环 300 次,多层软包电池和 18650 圆柱形电池在 100% DOD 下循环 150 次,在 50% DOD 下循环超过一千次。通过进一步调整 3D 石墨烯和其他材料的进步,这两个类别都实现了稳步增长。对早期原型电池进行的初步安全测试对于含有锂金属阳极的 Li-S 电池产生了令人惊讶的良好结果。
摘要:碳纳米管 (CNT) 的优异性能在引入橡胶基质时也呈现出一些局限性,特别是当这些纳米颗粒应用于高性能轮胎胎面胶料时。由于范德华相互作用,它们倾向于聚集成束,CNT 对硫化过程的强烈影响以及填料-橡胶相互作用的吸附性质加剧了橡胶-CNT 化合物的能量耗散现象。因此,它们在滚动阻力方面的预期性能受到限制。为了克服这三个重要问题,CNT 已用含氧基团和硫磺进行表面改性,从而改善了这些橡胶化合物在轮胎胎面应用中的关键性能。通过结合机械、平衡膨胀和低场核磁共振实验,对这些使用功能化 CNT 作为填料的新材料进行了深入表征。该研究的结果表明,通过在CNT表面引入硫,在橡胶基质和纳米颗粒之间形成共价键,对橡胶化合物的粘弹行为和网络结构产生积极的影响,降低了60◦C时的损耗因子(滚动阻力)和非弹性缺陷,同时增加了新化合物的交联密度。