1 以AI(人工智能)为例,欧盟高级别专家组报告将其定义为“根据环境和输入,表现出智能行为(可能具有一定自主性)的系统”,但“智能行为”的实质,在某种程度上依赖于解释。 此外,2016年美国发布的AI100报告中,曾引用尼尔斯·尼尔森对人工智能这一学科领域的定义:“人工智能是一门创造智能机器的研究,其中智能是指在其所处的环境中适当地发挥功能并具有一定的洞察力的能力。”但这一定义也存在很大程度的模糊性。事实上,报告指出,人工智能的模糊定义本身也有积极的一面,即加速人工智能的研究。基于此,尽管对于什么是“人工智能”或“人工智能技术”目前已达成一定共识,但过于严格地按照所采用的技术进行定义意义不大。同时需要注意的是,此类系统嵌入在高度复杂的系统中。此外,如果没有收集、存储和访问大量数据的基础设施、超高速通信网络、传感器组、机器人等,人工智能系统的实施将充满不确定性。如果不能开发并实施网络安全和人工智能伦理等确保此类系统安全性和稳健性的技术,人工智能将很难被广泛接受。人工智能涵盖了实现智能功能的广泛系统,预计将部署到未来社会、产业、日常生活以及科学研究和技术开发等所有领域。因此,这一战略的目标也必须在这些领域进行综合构思。
[1] Scheltens P,De Strooper B,Kivipelto M等。阿尔茨海默氏病。Lancet,2021,397:1577-90 [2] Talarico G,Trebbastoni A,Bruno G等。大麻素系统的调节:治疗阿尔茨海默氏病的新观点。Curr Neuropharmacol,2019,17:176-83 [3] Huang LK,Chao SP,Hu CJ。阿尔茨海默氏病新药的临床试验。J Biomed Sci,2020,27:18 [4] Zhou S,Chen S,Liu X等。体育活动改善了成年人患有阿尔茨海默氏病的成人日常生活的认知和活动:对随机对照试验的系统评价和元分析。Int J Environ Res Public Health,2022,19:1216 [5] Estrada JA,ContrerasI。中枢神经系统中的内源性大麻素受体:预防和治疗神经系统和精神疾病的潜在药物靶标。Curr Neuropharmacol,2020,18:769-87 [6] Tantimonaco M,Ceci R,Sabatini S等。体育锻炼和内源性大麻素系统:概述。细胞摩尔生命科学,2014,71:2681-98 [7] Charytoniuk T,Zywno H,Berk K等。内源性大麻素系统和体育活动 - 在针对代谢性疾病的新型治疗方法中强大的二人组合。Int J Mol Sci,2022,23:3083 [8] Forteza F,Giorgini G,Raymond F.有氧运动通过内源性大麻素诱导的神经生物学过程。细胞,2021,10:938 [9]王海军,牛亚凯,陈巍。内源性大麻素系统在运动促进脑健康中的研究进展。生命科学,2021,33:1096-103 [10] Matei D,Trofin D,Iordan DA等。内源性大麻素系统和体育锻炼。Neuron,2001,29:729-38 [15] Wilson RI,Nicoll RA。Int J Mol Sci,2023,24:1989 [11] Cristino L,Bisogno T,Di Marzo V.神经系统疾病中的大麻素和扩展的内源性大麻素系统。nat Rev Neurol,2020,16:9-29 [12] Chevaleyre V,Takahashi KA,Castillo PE。内源性大麻素 - 中枢神经系统中介导的突触可塑性。Annu Rev Neurosci,2006,29:37-76 [13] Llano I,Leresche N,MartyA。钙进入会增加小脑Purkinje细胞对应用GABA的敏感性并降低抑制性突触。Neuron,1991,6:565-74 [14] Ohno-Shosaku T,Maejima T,Kano M.内源性大麻素介导从去极化的突触后神经元到突触前末端的逆行信号。内源性大麻素在海马突触下介导逆行信号。自然,2001,410:588-92 [16] Ohno-Shosaku T,Tsubokawa H,Mizushima I等。突触前大麻素敏感性是海马突触中去极化诱导的逆行抑制的主要决定因素。J Neurosci,2002,22:3864-72 [17] Cassano T,Calcagnini S,Pace L等。大麻素
近年来,由于能源短缺和环境污染,低成本,高能量密度和环保特征的锂硫电池(LSB)引起了广泛的关注。然而,由锂多硫化物(Lips)引起的班车效应大大降低了LSB的cy效和寿命。为了解决此问题,我们通过一步热液方法设计了一个CO 3 O 4 -RGO复合材料,该方法用于修改聚丙烯(PP)分离器。CO 3 O 4 -RGO复合材料具有较高的电子电导率和吸附性能,可提供电子传输的通道并有效抑制嘴唇的班车。用CO 3 O 4 -RGO-PP分离器组装的锂硫电池具有令人满意的特定能力。在0.1 c时,第一个散落能力达到1365.8 mAh·g -1,并且在100个周期后,放电能力保持在1243.9 mAh·g -1。在0.5°C时350个循环后,放电能力为1073.9 mAh·g -1,每个周期的平均容量衰减率为0.0338%。这些结果表明CO 3 O 4 -RGO- PP分离器将在高性能LSB中具有良好的应用前景。
微生物,动物和植物中的代谢途径表现出各种关系。基于微生物硫代谢,本文总结了微生物,动物和植物中硫的四个主要代谢途径,并强调了相似性,差异和关系。微生物是生物硫循环的主要驱动力,参与硫的所有主要代谢途径。微生物通过微生物减少了硫磺硫,可减少甲烷在环境中的挥发。微生物或植物的同化硫还原性的动物有机硫来源,而动植物则缺乏异化或同化硫还原的功能。硫氧化发生在所有三种生物体中,具有相似的途径,其中硫转移酶多样化氧化产物。植物中的硫矿化尚不清楚,但是动物或微生物的矿化使植物中的硫硫底物可促进其他无机硫底物。 在本质上,基于硫代谢的生态关系,例如肠道微生物与宿主动物之间的关系,根际微生物与植物根,衰减的动物和植物的微生物矿化,以及微生物氧化的微生物矿化,硫磺的硫化和减少,显着增强了硫磺的硫磺含量。硫矿化尚不清楚,但是动物或微生物的矿化使植物中的硫硫底物可促进其他无机硫底物。在本质上,基于硫代谢的生态关系,例如肠道微生物与宿主动物之间的关系,根际微生物与植物根,衰减的动物和植物的微生物矿化,以及微生物氧化的微生物矿化,硫磺的硫化和减少,显着增强了硫磺的硫磺含量。
这项研究致力于基于合成低分子氮的杂环化合物,硫代吡啶胺的衍生物的合成低分子杂化化合物的开发。在合成化合物的调节活性,在小麦植物的营养阶段研究了硫吡汀的衍生物。对植物生长调节活性进行了比较分析,例如生长素1-萘乙酸(NAA)和细胞分裂素N-(2-氟甲基)-7 H--吡啶-6-胺(kinetin),已知的合成化合物和诸如sod剂量的衍生物, 6-甲基-2-甲基-4-羟基苯胺(Methyur,kamethur)和新的合成化合物,例如硫代吡啶胺的衍生物。形态学参数,例如平均芽和根长(MM),10植物(G)(G)的平均生物量(G)和生化参数,例如光合色素含量(mg/g FW)。由于筛查的结果,新的合成化合物,选择了硫吡咪定的衍生物,这些衍生物在小麦植物的形态计量和生化参数上显示了与生长素Naa和cytokin kinetin kinetin或合成化合物的调节活性或超过麦芽素Naa和canteratious or inious of sod sods of SODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSOD, 6-甲基-2-甲基-4-羟基苯胺(Methyur,Kamethur)。讨论了新合成化合物的调节活性的激素样特异性和选择性,即硫代吡啶的衍生物对小麦生长的衍生物。对植物生长调节活性与合成化合物的化学结构(硫代吡啶胺的衍生物)之间的关系进行了分析。建议在农业产业中使用选择最高的生长素样和细胞分裂素样调节活性的硫代吡啶的衍生物,显示出最高的生长素样和细胞分裂素样调节活性。
1马萨诸塞州剑桥市剑桥市理论上物理学中心,美国2139,美国2伊利诺伊州乌尔巴纳 - 卢巴纳大学 - 伊利诺伊州乌尔巴纳大学61801的物理学系美国伊利诺伊州巴达维亚市费米国家加速器实验室,美国60510,美国5超导量子材料和系统中心(SQMS),费米国家加速器实验室,巴达维亚,伊利诺伊州60510,美国6号物理和天文学系,美国伊利诺伊州伊利诺伊州60208,伊利诺伊州60208,加利福尼亚州,伊利诺伊州60208,伊利诺伊州60208,加利福尼亚州, Ithems,Wako,Saitama 351-0198,日本9南方科学技术大学,深圳,广东518052,中国