约为 3.75 eV,高于 PbS 本体带隙值,这是由于纳米晶 PbS 壳中的量子限制效应,其厚度约为 10 nm,如前所述 [9],[25]。有效带隙的增加使纳米晶 PbS 结构成为太阳能电池应用中更合适的窗口材料。
通常用作汽车点火电池的基本铅酸电池,中间有一个铅板和二氧化铅板,中间带有硫酸雌性酸性电解质。当能量从电池中排出时,铅板与硫酸反应形成硫酸铅和电子。这些Elec Trons启动了汽车,然后返回电池的另一侧,在该电池的另一侧,二氧化铅板使用电子和硫酸形成硫酸铅和水。对于新的熔融钠电池,铅板被液体钠金属取代,二氧化碳板被碘化钠的液体混合物和少量的氯化凝胶代替。
铅酸电池是最古老的电化学存储系统之一,在各种途径中仍然可以广泛应用,从汽车电池到网格存储。电池化学既简单明了),在放电期间,通过食用硫酸(用作电解质),从金属铅(在负电极(PB)上)和二氧化铅(在阳性电极(PBO 2)上)产生硫酸铅(PBSO 4)。该电池的主要优点是其低成本,99%的有效回收,原材料的丰度,相对安全性,低温性能和高特异性功率。但是,许多更新的应用(例如E- Rickshaw,轻度混合体和太阳能PV应用程序)需要铅电池以高速率和部分充电状态(PSOC)caccip cyclities cyclities cycling cycling。在电荷运行过程中,主要问题称为负板硫酸盐,因为这些工作条件允许更容易生成大铅硫酸盐晶体。较大的晶体比其体积相对较低,并且在电池充电期间更难减少。这导致其容量和电池过早故障的下降。这种现象主要发生在负板上,因为具有相对较高比表面积的正板不容易硫化。碳在负板中的作用至关重要,尤其是在负电荷状态下运行的电池,NAM中的碳碳的电动表面积增加了电极的电活性表面积,从而提高了NAM的固定性固定性和固定性的固定性,并提高了NOM的固定性。