名称:黄,安德鲁,作者。标题:硬件黑客:制造和破解硬件的冒险 / 安德鲁“Bunnie”黄。说明:第 1 版。| 旧金山:No Starch Press,Inc.,[2017] 标识符:LCCN 2016038846(印刷版)| LCCN 2016049285(电子书)| ISBN 9781593277581(平装本)| ISBN 159327758X(平装本)| ISBN 9781593278137(epub)| ISBN 1593278136(epub)| ISBN 9781593278144(mobi)| ISBN 1593278144(mobi)主题:LCSH:电子设备和电器 - 设计和构造。|电子设备和器具——技术创新。| 计算机输入输出设备——设计和构造。| 逆向工程。| 电子工业。| 黄,安德鲁。分类:LCC TK7836 .H83 2017(印刷版)| LCC TK7836(电子书)| DDC 621.381092--dc23 LC 记录可在 https://lccn.loc.gov/2016038846 获得
本白皮书有助于更广泛地了解零信任以及应用于硬件和供应链保证的挑战。其目的是促进对零信任原则的高层理解,促进必要的对话,以了解将这些原则应用于微电子领域需要什么,包括在实施采购政策的具体指导之前演示和证明技术的必要性。零信任安全模型最初是作为信息技术系统(即网络)的保证框架设计的。它已成为电子硬件领域的一种策略,用于管理供应链中任何地方的假冒、恶意修改和利用风险。零信任的核心设计原则是,系统中的任何组件或参与者都不应被默认或孤立地假定为受信任,这导致重点放在验证、检测和响应上。在本文中,我们讨论了“零信任”在硬件和供应链保证以及系统工程背景下的含义。微电子硬件及其相关供应链的保证在零信任原则的应用中带来了重大挑战和困难。零信任并不意味着系统中没有信任。相反,零信任是一套原则,关于如何做出基于风险的决策,以在基于持续监控和分层安全的系统中授予有限的访问和集成。这需要一种方法和经济动机,通过基于风险的评估和控制来量化保证,从而推动设计、制造、测试、维护和维持以及必要的供应链决策。零信任硬件保证的实施需要清楚地了解所涉及的挑战,以及大量投资和激励结构,以激励可量化保证的稳健应用和采用。本文展示了行业和政府在整个供应链中的需求,从设计到制造、测试、系统集成、运营和维护到处置。虽然一些人认为零信任是基于快速增加的威胁形势和制造能力的演变而必不可少的,但零信任并不是一个二元解决方案,而是一系列安全解决方案中的一个潜在工具。论文处置本文将作为参考资源在国防工业协会网站上提供:https://www.ndia.org/divisions/electronics/resources。允许广泛分发和引用本文,并注明出处。主要作者 以下是本文主要作者的列表: Daniel DiMase,Aerocyonics, Inc. 总裁兼首席执行官 Zachary A. Collier,Radford 大学管理系助理教授 Jeremy Muldavin,GlobalFoundries DMTS 项目管理 John A. Chandy,教授,康涅狄格大学电气与计算机工程系 Donald Davidson,Synopsys 网络 SCRM 项目总监 Derek Doran,Tenet3, LLC 研发总监 Ujjwal Guin,奥本大学电气与计算机工程系助理教授 John Hallman,OneSpin Solutions 产品经理 Joel Heebink,Aerocyonics, Inc. 项目工程师 Ezra Hall,GlobalFoundries 航空航天与国防业务线高级总监 Alan R. Shaffer 先生,波托马克政策研究所董事会成员
摘要— 为了保证储能系统 (SAE) 的适当运行条件,延长其使用寿命并为用户提供安全保障,需要使用一种称为电池管理系统 (BMS) 的设备。目前销售的大多数设备都局限于锂电池技术的操作特性,这些特性与实验室研究和开发的其他类型电池的操作方式不同。可以通过开放平台规避其他技术的限制,允许对 BMS 进行修改以适应应用技术。这种自适应特性在商业化设备中很少见,当 BMS 的目标与需要实验步骤的学术研究相关时,这种特性至关重要。因此,本研究提出了一种低成本自适应开源 BMS 原型,能够监测最多 10 个串联电池的电压、电流、温度和充电状态变量。开发包括用于 BMS 功能基本运行的硬件和软件。所提出的 BMS 是基于两种电池技术开发的:18650 锂离子和氯化镍钠。 BMS 在两种技术上的多功能性旨在展示系统的适应能力。对于远程监控,使用 Node-RED 和 IBM Watson 工具开发了一个界面。
T3Ster(热瞬态测试仪)是一种用于半导体器件封装热特性分析的先进硬件解决方案。T3Ster 旨在从各种 IC(包括堆叠芯片和系统级封装器件以及其他半导体元件)中快速、重复且准确地生成热特性。除了测量现有封装外,T3Ster 结果还可用于创建热模型,供热设计软件(如 Mentor Graphics FloTHERM® 软件)使用,以预测器件在各种应用中的性能。T3Ster 结果还可读入 FloTHERM,并用于自动校准芯片封装的详细热模型,确保模型在稳态和瞬态模拟中的预测精度。因此,T3Ster 和 FloTHERM 相结合,使工程师和开发人员能够充分利用无与伦比的热设计解决方案,并巩固其热建模活动的准确性。
在暗硅时代,硬件专业化通常被视为扩展性能的一种方式,现代 SoC 具有数十个专用加速器。通过仅在需要时启动硬件电路,加速器从根本上以芯片面积换取功率效率。然而,暗硅也有一个严重的缺点,那就是它的环境足迹。虽然硬件专业化通常通过高能源效率来减少操作足迹,但是在芯片上集成额外加速器所产生的具体足迹会导致环境足迹的总体净增加,这导致先前的研究得出结论,暗硅不是一种可持续的设计范式。我们通过可重构逻辑探索可持续的硬件专业化,与大量加速器相比,它有可能通过在多个应用程序中摊销其具体足迹来大幅减少环境足迹。我们提出了一个抽象的分析模型,评估用可重构加速器替换专用加速器的可持续性影响。我们针对各种内核,推导出 ASIC 和 CGRA(一种代表性的可重构结构)的芯片面积和能量数字的硬件综合结果。我们将这些结果输入到分析模型中,并得出结论:可重构结构更具可持续性。我们发现,CGRA 可以取代少量到十几个加速器。此外,用 CGRA 取代大量加速器可以大大减少对环境的影响(减少 2.5 倍到 7.6 倍)。