作物遗传多样性和种群结构评估对于标记性状关联、标记辅助育种和作物种质保护至关重要。我们分析了一组 285 个硬粒小麦种质,其中包括 215 个埃塞俄比亚硬粒小麦地方品种、10 个已发布的硬粒小麦品种、10 个来自埃塞俄比亚的先进硬粒小麦品系和 50 个来自 CIMMYT 的硬粒小麦品系。我们分别基于 11,919 个已知物理位置的 SNP 标记,调查了整个小组以及 215 个地方品种的遗传多样性和种群结构。整个小组聚类为两个种群,一方面主要代表地方品种,另一方面主要代表已发布的、先进和 CIMMYT 品系。对地方品种的进一步种群结构分析发现了 4 个亚群,强调了埃塞俄比亚硬粒小麦地方品种中高度的遗传多样性。基于两组群体结构的 AMOVA 分析表明,群体间和群体内均存在显著 (P < 0.001) 的变异。两组群体内的总变异 (81%、76%) 高于群体间的总变异 (19%、24%)。基于群体结构分析的全组和埃塞俄比亚地方品种的遗传分化 (FST) 和基因流 (Nm) 分别为 0.19 和 0.24、1.04 和 0.81,表明遗传分化程度高,基因流有限。多样性指数证实,地方品种组 (I = 0.7、He = 0.46、uHe = 0.46) 比高级品系 (I = 0.6、He = 0.42、uHe = 0.42) 更具多样性。同样,也观察到地方品种群内的差异。总之,我们发现埃塞俄比亚硬粒小麦地方品种具有很高的遗传多样性,这可能是国家和国际小麦改良计划的目标,以利用其宝贵的特性来对抗生物和非生物胁迫。
行业4.0应用程序涉及更多数量的传感器或物联网(IoT)设备来支持行业自动化。它涉及更多的计算来分析从处理单元的几个关键部分收集的传感器数据。稀疏信号处理是在通信和信号处理领域中具有许多应用的。本文介绍了一种新的方法,可以借助水平交叉采样(LCS)和基于回溯的基于回溯的迭代硬阈值(BIHT)算法进行重建。该过程涉及,信息信号使用发射机侧的不均匀采样将信息信号转换为随机稀疏信号,然后可以使用接收器侧的BIHT算法将其重建。模拟结果表现出所提出的BIHT重建的出色性能。
一只十个月大的雄性约克夏犬在遭受脑外伤四个月后接受了 CT 检查。头部 CT 扫描显示脑室扩张,右顶骨附近有新月形外周血肿,并有矿化区域。血肿的内脏层在原生扫描中呈高衰减,静脉注射碘化造影剂后显示中度对比增强。颅骨未发现骨折。这些发现与急性慢性钙化性硬膜下血肿相符,这种血肿在人类中已有更详细的描述。这是第一份报告,其中描述了使用计算机断层扫描对狗进行这种疾病的成像结果。关键词:犬、头部创伤、脑外伤、计算机断层扫描
尽管单向函数已被公认为经典密码学的最小原语,但量子密码学的最小原语仍不清楚。通用外推最早由 Impagliazzo 和 Levin (1990) 提出,当且仅当单向函数存在时,通用外推任务才是困难的。为了更好地理解量子密码学的最小假设,我们研究了通用外推任务的量子类似物。具体来说,我们提出了经典→量子外推任务,即根据计算基础中测量的第一个寄存器,外推二分纯态的其余部分。然后,我们将其用作建立量子密码学新连接的关键组件:(a) 如果经典→量子外推很难,则存在量子承诺;(b) 如果存在以下任何密码原语,则经典→量子外推很难:使用经典公钥的量子公钥密码学(如量子货币和签名)或2消息量子密钥分发协议。对于未来的工作,我们进一步推广外推任务并提出一个完全量子的模拟。我们表明,如果存在量子承诺,则很难,而对于量子多项式空间则很容易。
1伦敦大学学院化学系,伦敦戈登街20号,WC1H 0AJ,英国2物理与天文学系,乌普萨拉大学,乌普萨拉大学,邮箱516,75120 Uppsala,瑞典3号,瑞典3化学系 - Ångström实验室,Uppsala Universiti联邦材料科学技术实验室,加入技术和腐蚀的实验室,瑞士,瑞士5号,基尔大学实验和应用物理研究所,基尔大学,德国24098,德国6 Ruprecht Haensel实验室,Deutsches,Elektronen-synchrotron desy,226607 Hamburg,Elektronen-synchrotron desy,德国Mainz,55128InstitutFürPhysikInstitutfürphysik Institut f-75005 sorbonne Universit'E,CNRS,CNRS,CNRS,CNRS,Laboratoire de Chimie体格 - Mati eRe et rayonnement,LCPMR,F-75005 Paris,Paris,Paris,Paris,France 9 France of Thressics of Thressics of Temple University,Paradelofia伯克利,加利福尼亚州94720,美利坚合众国11德国埃莱克特伦 - 同步性Desy,22607汉堡,德国
报告药物授权后的可疑反应很重要。它允许继续监视药用产品的利益/风险余额。医疗保健专业人员被要求通过国家报告系统报告任何可疑的不良反应:“国家药品和保健产品机构(ANSM)和区域药物保护中心网络 - 网站:www.ansm.sante.fr”。
Feng Wang, [a,b]# Lian Chen, [a] # Jiaqi Wei, [c] Caozheng Diao, [d] Fan Li, [b] Congcong Du, [a] Zhengshuai Bai, [b] Yanyan Zhang, [b] Oleksandr I. Malyi,* [a,e] Xiaodong Chen, [c] Yuxin Tang,* [a,b] Xiaojun Bao* [a,b]
“我们广泛且可互换地使用两个首字母缩略词 IoT 和 NoT(物联网)——NoT 和 IoT 之间的关系很微妙。IoT 是 NoT 的一个实例,更具体地说,IoT 将其‘事物’绑定到互联网。另一种类型的 NoT 可能是局域网 (LAN),其‘事物’均未连接到互联网。社交媒体网络、传感器网络和工业互联网都是 NoT 的变体。这种术语上的区分使得从不同的垂直和质量领域(例如,交通、医疗、金融、农业、安全关键、安保关键、性能关键、高保证等)中分离出用例变得容易。这很有用,因为没有单一的物联网,谈论将一个物联网与另一个物联网进行比较是没有意义的。”
■ 简介 - 用起重机摄像机拍摄的图像 - 起重机摄像机安装在吊臂顶部并俯视地面,因此监视器上显示的人像非常小。如果操作员专注于驾驶,他们可能会忽视这一点,这是一个风险。为了充分发挥起重机摄像机的作用,我们利用基于人工智能的图像识别技术,识别起重机摄像机(监视器)上捕捉到的人和物体,并发出警报(监视器上的画面、警告音等)。开发了一种系统来检测
国枝武一 副教授 近藤小之(研究时):特任研究员 现:千叶工业大学先进工程学院生命科学系助理教授 田中章宏(研究时):博士生 现:日本学术振兴会遗传学研究所研究员 论文信息 期刊名称:PLOS Genetics 标题:使用 DIPA-CRISPR 在极端耐受性孤雌生殖缓步动物中单步生成纯合敲除/敲入个体 作者:近藤小之、田中章宏、国枝武一*(*:通讯作者) DOI:10.1371/journal.pgen.1011298 URL:https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1011298 研究资助本研究获得以下项目的资助:“缓步动物特异非结构域蛋白的发现与功能分析(项目编号:21H05279)”、“耐受极端环境的缓步动物抗性机制的动力学与新分子原理阐明(项目编号:20K20580)”、“高抗辐射缓步动物保护与修复新机制阐明(项目编号:20H04332)”。 名词解释(注1) 缓步动物 一种缓步动物,学名是 Ramazzottius varieornatus。从北海道札幌市的一座桥上分离出的单个个体衍生的遗传同质种群(YOKOZUNA-1谱系)已在实验室中进行了连续繁殖,并且由于其基因组已被破译,它被用于缓步动物的分子生物学研究。它们通过孤雌生殖进行繁殖,雌性单独产卵而不交配。它们具有一种特殊的耐干燥性,称为“干燥切开术”,这使它们能够承受几乎完全脱水,并且在这种状态下,它们能够抵抗各种极端压力。 (注2)目标基因:该技术允许研究人员只修改他们想要研究的特定基因。本研究以参与细胞内物质运输的蛋白质(转运蛋白)和海藻糖合成酶基因为靶基因,进行基因组改造。 (注3)敲除个体、敲入个体 通过人为地向目标基因中引入突变来破坏该基因功能的个体称为敲除个体。另一方面,研究人员设计的 DNA 序列被整合到基因组的目标位置的个体被称为敲入个体。
