在动物和细胞培养中的应用 1. 项目描述:将使用针对 [插入物种] 的 CRISPR 来灭活 [插入基因],以创建 [插入疾病] 的模型。包括 CRISPR 的剂量:病毒载体、质粒、脂质体等。 2. 基因沉默的形式:您是尝试随机还是特定的基因沉默?沉默是一步到位(Crispr/Cas9 和 gRNA 结合在一个载体中)还是两步到位(创建含有 Crispr/Cas9 的细胞系,然后添加 gRNA)或购买含有 CRISPR-Cas9 的预转染细胞系,然后转染 RNA 指导序列? 3. 遏制要求:通常所有涉及非病毒剂量的活动都采用 BSL-1 和化学卫生规范、遏制设备和设施。对于病毒载体 CRISPR,建议采用包括生物安全柜在内的 BSL-2 规范。离心机安全预防措施,用于培养箱和 BSC 之间运输的二级容器。不要用手触摸眼睛、鼻子和嘴巴,以避免粘膜暴露;护目镜或面罩可能有助于实现这一目标。4. CRISPR 注射给药注意事项:应尽量减少使用锐器。强烈建议在动物给药期间使用安全锐器技术。5. 泄漏:如果非病毒载体,请按照化学卫生计划进行清理。如果病毒载体,请遵循 BSL-2 泄漏说明。6. 生物危害废物:收集在双层红色袋子中并在硬质容器中运输。7. 批准的消毒剂:
近年来,为了提高发动机汽车的燃油效率,降低混合动力汽车和电动汽车的电机负荷,减少二氧化碳排放,人们对减轻车身重量的需求日益强烈。因此,高强度钢板的采用量迅速增加。与此同时,对硬质薄型电工钢板的需求也在增加,对提高车载电动机的效率和减小尺寸的需求也在增加。为了满足社会的这种需求,钢铁企业需要一种能够更高效地生产更薄、更硬材料的轧机。为了满足这些需求,Primetals Technologies 公司开发了 HYPER UC-MILL*(6 辊轧机),其工作辊比冷轧领域的领导者 UC-MILL(6 辊轧机)的工作辊小 20-30%。该轧机实现了更高的形状可控性和更低的轧辊负荷,具有比现有 UC-MILL 更大的压下能力,尽管工作辊直径较小,但具有驱动工作辊的显著优势。到目前为止,我们已收到总共七台 HYPER UC-MILL 的订单,其中三台已投入运行,四台目前正在设计和制造中。该轧机对硬而薄的材料(高强度钢和高级电工钢板)的生产做出了重大贡献。本报告介绍了 HYPER UC-MILL 的特点、其使用效果以及其在 2020 年 1 月从首钢迁安电动汽车电工钢有限公司(中国)订购的用于生产高级电工钢板的串联冷轧机中的应用示例。 * HYPER UC-MILL 是 Primetals Technologies Japan, Ltd. 的注册商标。
碳钢腐蚀是由于金属和周围物质之间的化学反应而发生的。腐蚀可以使用硅酸盐的腐蚀抑制剂抑制。以二氧化硅形式的棕榈油壳提取物可以用作ST-37碳钢中的腐蚀抑制剂,浸泡时间为4、8和12天,在水上,海水和乙酸中为25%。施加到钢的抑制剂浓度的变化为10 ppm,20 ppm,30 ppm,40 ppm,并且在每种培养基中作为树脂硬质(RH)粘合剂。测试腐蚀速率是使用减肥方法确定的,并将抑制的有效性用作对照。腐蚀速率增加取决于样品中的体重减轻量。用FTIR和XRF进行硅酸盐结果的表征。结果表明,获得的硅酸盐产量为76.99%。ftir结果波数为3466.08 cm -1和2318.44 cm -1,表明存在硅烷醇基团(Si-OH)和Siloxsan(Si-O-SI),并表明基于98.01%的XRF结果,预期有硅酸盐化合物和硅水平。30 ppm的浓度是在蒸馏水和海水浸泡培养基中获得的最佳抑制剂浓度。浓度为20 ppm是在25%乙酸浸泡培养基中获得的最佳抑制剂浓度。在30 ppm抑制剂浓度的水上培养基中,抑制效率的最大水平是在浸泡时间为12天的情况下获得的。关键字:贝壳,抑制剂,棕榈,硅酸盐,ST-37治疗后ST-37碳钢的SEM表征显示,没有抑制作用的碳钢表明,表面腐蚀的腐蚀性超过碳钢并具有抑制作用。
所有 PVC Schedule 80 管道均应采用 I 型 I 级聚氯乙烯 (PVC) 化合物制造,其细胞分类为 12454(符合 ASTM D1784 标准),商品名为 H707 PVC。管道应严格按照 ASTM D1785 制造,在材料、工艺、爆破压力、压扁度和挤压质量方面始终符合和/或超过此标准的质量保证测试要求。所有 PVC Schedule 80 管道均应符合 NSF 标准 14、CSA 标准 B137.3 硬质 PVC 管道(适用于压力应用)的要求,并应带有这些认证机构的标志。根据 CAN/ULC S102.2 进行测试时,管道的火焰蔓延等级还应为 0-25。管道应由获得 ISO 9001 认证的制造商在美国使用国内材料制造。管道制造商应将 6 英寸及更大的标准长度管道两端斜切。所有管道在制造现场生产后都应存放在室内,直到从工厂发货。该管道应带有美国国家卫生基金会 (NSF) 饮用水应用认证印章。所有管道均由 Georg Fischer Harvel LLC 制造。PVC Sch 80 插座配件应满足或超过 ASTM D2467 的尺寸和性能要求。所有 PVC Schedule 80 螺纹配件均应满足或超过 ASTM D2464 的尺寸和性能要求。所有配件均应根据标准 14/61 在 NSF 中列出,并应带有 NSF 饮用水印章。
该药物会受到其他监测。这将允许快速识别新的安全信息。医疗保健专业人员被要求报告任何可疑的不良反应。有关如何报告不良反应的第4.8节。1。药用产品的名称Augtyro 40毫克硬胶囊Augtyro 160毫克硬胶囊2。定性和定量组成Augtyro 40 mg硬胶囊每个硬胶囊含有40毫克的重核。Augtyro 160毫克硬胶囊每个硬胶囊含有160 mg重新对抗。有关赋形剂的完整列表,请参见第6.1节。3。药物形式胶囊,硬质(胶囊)Augtyro 40毫克硬胶囊尺寸0(长度为21.7毫米),用白色不透明的身体和帽子的硬明胶胶囊,以及“ rep 40”,用蓝色墨水在帽上印有蓝色墨水。Augtyro 160毫克硬胶囊尺寸为0(长度21.7毫米),硬明胶胶囊,带有蓝色不透明的身体和帽子,以及“ rep 160”,用白色墨水在帽上打印。4。临床细节4.1治疗指示Augtyro作为单一疗法,用于治疗成年ROS1阳性晚期非小细胞肺癌(NSCLC)的患者。augtyro作为单一疗法用于治疗12岁及以上的成年和小儿患者,具有表达NTRK基因融合的晚期实体瘤的治疗,并且已经接受了先前的NTRK抑制剂,或者没有接受过NTRK的NTRK抑制剂和治疗方案,未针对NTRK的临床益处有限的治疗方法,请参见ntrk的治疗方法。 Augtyro应由医生在使用抗癌药产品方面启动和监督。
伊马替尼梅赛酸盐,酪氨酸激酶抑制剂(TKI)和血小板衍生的生长因子受体α(PDG-FRA),有效地抑制了癌细胞的增殖[1]。它已被确定为慢性髓样白血病(CML)的一线治疗,并且在晚期或转移性病例中仍然是胃肠道间质肿瘤(GIST)和降低的治疗方法[2]。虽然伊马替尼治疗有效,但并非没有副作用。尽管皮肤脱落是一种有据可查的不良反应,但也观察到硬pa的口服粘膜变色,尽管频率较低[3]。在这里,我们提出了三个病例报告,详细介绍了伊马替尼硬质伊马替尼引起的粘膜变色,在接受伊马替尼治疗的患者和DFSP患者中,为未来的研究提供了对这种现象原因的研究。患者1是一名70岁的波兰女性,具有详尽的要点,她出现了未知的坚硬粘膜粘膜变色。2011年,她接受了分段的小肠切除术,然后进行了伊马替尼治疗。口腔检查显示硬口感粘膜的棕色变色,其最高尺寸约为25 mm(图1 A)。进行了粘膜色素沉重的局部麻醉下的一次性活检,然后进行上呼吸道的光纤检查,显示正常的发现。组织病理学报告证实了硬pa的粘膜层,表现出细小的棕色球形晶状体,均匀分布。未观察到炎症或出血的证据。因此,诊断细,深褐色的球形颗粒被沉积在结缔组织中。没有看到上皮中的黑色素病或黑素增生(图1 B,C)。
a. 地块总面积和建筑占地面积总面积。7. 停车场和车道:停车位、符合 ADA 标准的停车位、装卸区和车道的布局。这可能包括车道宽度和紧急车辆转弯半径的测量。距离通行权 20 英尺处需要是均匀耐用的硬质表面(不包括碎石)。8. 公用设施:水、下水道、电力和煤气等公用设施连接的位置。这些线通常显示为通向主要接入点或公用设施地役权的虚线或点划线。9. 景观和绿地:景观特征的详细信息,例如树木、灌木、草坪和花坛。场地平面图应注明植物和树木的种类和数量。10. 行人和车辆通道:允许行人围绕物业移动的路径、人行道和人行横道,以及场地上的任何其他道路或街道。 11. 排水和分级:显示如何分级土地以实现适当的排水,以及必要时的蓄水池或滞留池。它显示了斜坡、洼地和其他用于控制雨水径流的特征。沉积物控制计划的单独文件 - 金县 SFDM 应用程序“D” 12. 照明:建筑物和通道的外部照明位置,包括灯杆、灯具和照明计划,以确保安全和可见度,而不会产生过多的光污染。 13. 地形特征:现有和拟议的海拔、轮廓和其他物理场地特征,如丘陵、山谷或水体。这些说明了开发将如何与景观互动。 14. 分区信息:关于物业分区指定的说明、适用的建筑规范以及影响场地使用方式的任何其他限制或覆盖。 15. 关键区域:指定的环境敏感区域,包括湿地(如沼泽、沼泽地、泥沼、池塘和湖泊)、水道(如小溪和河流)、地质不稳定的山坡、潜在地质不稳定的区域、鱼类和野生动物栖息地保护区以及特殊危险洪水区。
X 射线反射率 (XRR) 被广泛用于研究硬质和软质凝聚态材料的表面和界面,包括二维材料、纳米材料和生物系统。它能够以亚埃的精度推导出材料表面区域沿法线的横向平均电子密度分布。[4–6] 这有助于确定各种参数,包括表面粗糙度、单层或多层材料的结构以及毛细波对液体表面的影响。高亮度同步加速器 X 射线束能够在环境条件下实时在分子水平上分辨材料结构,而其他表面敏感实验技术几乎无法做到这一点。[7] 此类实验的例子是使用专用设备和样品池研究液体表面和界面。[8–11] 然而,存在与液体 XRR 相关的特殊问题。液体和支撑物之间的润湿角会导致样品液体弯曲,这通常会使数据分析复杂化。 [12] 这个问题可以通过利用能够处理大面积样品的样品环境来解决,例如朗缪尔槽 [13] 应用特殊的数据处理方法 [12,14] 或使用 X 射线纳米束。 [15] 然而,在某些情况下,可以充分利用样品曲率,例如 Festersen 等人 [15] 使用宽平行同步加速器光束“一次性”记录 XRR 曲线,但散射矢量 q 的范围有限。 专用于原位和/或原位 XRR 研究的样品环境 [16] 的最新发展开辟了新的机遇,例如,通过化学气相沉积 (CVD) 研究在液态金属催化剂 (LMCats) 上生长 2D 材料的过程。 [17] 这些系统有望生长高质量的材料 [18] 但同时,对实验的要求很高。 [19] 它们必须适应高操作温度、高材料蒸发以及在大气压下暴露于反应气体混合物。此外,它们还局限于有限尺寸的样本
入围候选人将通过电子邮件/电话通知并邀请参加面试。参加面试不会获得任何 TA/DA 报酬。该职位立即可用。面试将于 2023 年 5 月/6 月举行。任命将与项目同时结束,纯属临时任命。选择将基于资格、经验和面试表现。NITK Surathkal 保留拒绝任何或所有申请的权利,无需说明任何理由。项目摘要:由于磨损、腐蚀和氧化导致表面退化,挑战日益增加,发电厂或飞机工业中使用的大多数工程部件都面临性能下降和产品设计寿命缩短等问题。对能够一次性解决许多问题的新型材料的需求是当务之急。如果说到锅炉或燃气轮机,涂层需要具有抗高温侵蚀、腐蚀和氧化性能。这主要是因为解决任何类型的表面退化都无助于应对挑战环境。众所周知,NiAl 合金具有高温性能。然而,关于它们作为热喷涂涂层的应用研究尚未详细探讨,尤其是当 NiAl 用 cBN 和 SiC 等硬质相增强时。NiAl 具有有序的晶体结构、低密度、高熔点、高硬度、高机械强度、高温腐蚀和耐磨性。另一方面,CBN 和 SiC 颗粒是基础。它们以高熔点、低密度和极高的硬度而闻名。它们具有高耐化学性、良好的高温强度、优异的抗热震性和优异的耐磨性。这些属性是解决表面退化问题的增强相的完美选择。因此,本提案重点关注使用 HVAF 和激光重熔技术开发以 CBN 和 SiC 为增强相的新型 NiAl 复合涂层。生产的涂层可用于保护发电厂的锅炉部件或修复某些飞机部件。NiAl 与 CBN 或 SiC 复合涂层将使用 HVAF 和激光重熔技术。将进行的主要实验是高温滑动磨损、侵蚀和氧化试验。将详细研究添加 cBN 和 SiC 将如何影响 NiAl 复合涂层的高温行为。
使用遗传转化方法评估在果树种类中表达的基因的功能是一个漫长的过程,因为这些树木通常是对遗传转化的顽固性,并且在较长的幼年相中不能忍受果实。果实中的瞬时基因表达能够对与果实性状相关的基因进行功能分析,从而加速了果实生理的研究。在这里,通过使用最近开发的“ tsukuba系统”,我们成功地建立了收获的水果组织中有效的瞬态表达系统。“ tsukuba系统”利用了双子病毒复制系统和双终止仪的组合,从而确保了足够的转基因表达水平。我们使用蓝莓水果作为模型来表征该系统在果组织中瞬时表达的适用性。PTKB3- EGFP载体是通过浸润到几种蓝莓品种的水果组织中引入的。我们发现,果实灌注后4-6天,果实中的瞬时GFP荧光。农杆菌悬浮液很容易注入柔软的成熟果实,GFP强烈表达。然而,硬质果实无法通过农业悬浮液渗透,很少检测到GFP。然后,我们测试了开发系统对其他果树的适用性:六个家庭,17种和26种品种。GFP荧光。在蓝莓,鸟莓,甜樱桃,杏子和卫星普通话中,GFP高度表达并以很大一部分的肉体观察到。在Kiwifruit,Hardy Kiwifruits,柿子,桃子,苹果,欧洲梨和葡萄中,GFP荧光仅限于某些部分水果。最后,对蓝莓中的瞬态VCMYBA1过表达进行了测试,作为水果中基因功能分析的模型。瞬态VCMYBA1过表达诱导肉中的红色色素沉着,这表明VCMYBA1表达引起花青素的积累。这项研究为在水果中表达的基因的快速评估提供了技术基础,这对于长期幼年阶段的水果作物的基因功能评估研究非常有用。