摘要:在三十多年来,基于肿瘤选择性治疗实体瘤的渗透性和保留率(EPR)效应的纳米医学已受到了很大的关注。然而,由于肿瘤或栓塞性肿瘤血管,晚期癌症的治疗仍然是一个巨大的挑战,这导致了EPR效应的所谓异质性。我们先前使用一氧化氮供体和其他称为EPR效应增强子的药物来恢复血管中血管中血流受损的方法。在这里,我们表明,两个新型的EPR效应增强剂 - 异端二硝酸盐(ISDN,Nitrol®)和Sildena fi柠檬酸盐 - 将三种大分子分子药物递送至肿瘤:聚(造型(造型(造型))(造型 - co-maleic Acid)(Sma)和cisplatin,smaplatin,smaplatin,smaplatin;聚(N-(2-羟丙基)甲基丙烯酰胺)聚合物共轭锌原磷脂(光动力疗法和成像);和SMA葡萄糖胺 - 偶联的硼酸络合物(硼中子捕获疗法)。我们在患有晚期C26肿瘤的小鼠中测试了这些纳米果。当这些纳米医学与ISDN或Sildena-Fil一起施用时,肿瘤递送,因此阳性治疗结果在直径为15 mm或更多的肿瘤中增加了2至4倍。这些结果证实了使用EPR效应增强子恢复肿瘤血流的基本原理。总而言之,所有测试的EPR效应增强剂均显示出在癌症治疗中应用的巨大潜力。
硼是化学和材料科学的基石之一,在历史和现代世界中有着广泛的用途。这种元素在自然界中以硼酸盐和硼酸盐的形式存在,传统上用于玻璃、陶瓷和防腐产品。但在现代,硼正成为从能源技术到纳米技术等许多领域的战略材料。此外,硼在能源领域,特别是在可再生能源系统和电池技术中的作用非常突出。在太阳能系统中,硼作为一种成分脱颖而出,可以提高锂离子电池的能量密度和寿命,同时提高光伏电池的效率。虽然硼氢化物在氢存储和释放领域的重要性日益增加,但碳化硼通过在核能反应堆中提供中子控制来提高安全性。此外,硼还用于国防和航空航天工业中轻质耐用材料的生产。在纳米技术领域,硼纳米管和纳米材料在储能、工业催化剂和传感器技术方面实现了突破性应用。此外,硼基化合物以其抗癌特性和支持伤口愈合的作用在生物医学领域引起了人们的关注。硼元素还有助于可持续农业实践,作为支持植物生长和提高农业生产力的肥料的主要成分。硼的多种用途使其成为未来能源、材料和生物技术领域不可或缺的组成部分。© 2023 DPU 保留所有权利。关键词:硼酸;硼酸盐;化学结构;准金属
生物印刷是一项蓬勃发展的技术,在组织工程和再生医学中有许多应用。然而,大多数用于生物打印的生物材料取决于使用牺牲浴和/或非生理刺激的使用。可打印的生物材料在其组成和机械性能方面通常也缺乏可调节性。为了应对这些挑战,作者介绍了一种新的生物材料概念,他们称其为“可单击的动态生物联系”。这些生物学使用可以打印的动态水凝胶,并通过点击反应进行化学修饰,以在打印后使用印刷对象的物理和生化特性。特别是使用透明质酸(HA)作为感兴趣的聚合物,研究者研究了使用基于富酯的基于硼酸酯的交联反应来产生可打印和细胞增强的动态水凝胶,从而允许生物涂纸。通过生物正交点击部分对产生的动态生物学进行化学修饰,以允许使用带有互补点击功能的分子进行各种后印刷修饰。作为概念的证明,作者执行了各种后打印的修饰,包括调整聚合物组成(例如HA,HA,硫酸软骨素和明胶)和Sti效应,以及通过粘附性肽固定化(即,RGD peptide)来促进细胞粘附。结果还表明,这些修改可以在时间和空间中控制,为4D生物打印应用铺平了道路。
化学名称:1-胞戊丙基-6-氟-1,4-二氢-8-甲氧基-7 - [((4AS,7AS)-octahydro-6h-吡咯洛洛尔[3,4-b]吡啶素-6- 6-基] -4-4- oxo-3-oxo-3- oxo-3- quem-3- quiinolinecarboxylicic酸,monohydrochlorice。Moxifloxacin与其他喹诺酮不同,因为它在8个位置具有甲氧函数,而S,S,S,S,S,S,S,S,S,S,S,S,S,S-S-Conmenonyl环中的一个位置部分。盐酸莫西法沙星是略带黄色至黄色的晶粉。每个ML的Vigamox®溶液中含有5.45 mg莫西法沙星盐酸盐,等于5 mg莫西沙星碱基。包含:活动:莫西沙星0.5%(5 mg/ml);防腐剂:无。产品是自保存的。无活动:氯化钠,硼酸和纯净水。还可能包含盐酸/氢氧化钠以调节pH值。Vigamox®溶液是等值量的,在pH 6.8处配制,渗透压约为290 mosm/kg。临床药理学:药代动力学/药效学:在局部眼部给药Vigamox®之后,莫西法沙星被吸收到全身循环中。在21名男性和女性受试者中测量了莫西法沙星的血浆浓度,这些受试者每天3次接受双侧局部眼剂量的Vigamox®溶液4天。平均稳态C最大和
当前的能量和移动性转化,在很大程度上依赖电动汽车(EV)和可再生能源需要电池。锂离子电池是重塑我们的运输系统的主要候选者。尽管已经主导了电动汽车市场的能源储能组件,但锂离子电池仍存在与易燃液体电解质有关的安全问题。此外,它们接近达到最大能量密度。替代电池技术,更安全且能够存储更多的能量,因此引起了极大的兴趣。一个突出的例子是使用陶瓷或聚合电解质及其复合材料的固态电池。本文探讨了内部处理和表征技术,以研究所有固态锂电池的无机电解质的过程,并提高无机电解质的性能。无机电解质是具有高离子电导率的固体,可以使具有高功率和能量密度的安全电池。但是,在达到商业化之前,需要克服许多挑战。进步与了解控制离子传输的属性有关。本文的一个焦点是用硼酸处理电解质材料Li 7 La 3 Zr 2 O 12(LLZO)。这种表面处理似乎可以应对有害的Li 2 CO 3的形成,因此,均针对烧结的陶瓷电解质颗粒和LLZO粉末进行了探索。分别通过分析对烧结的影响以及在聚合物电解质矩阵中实施粉末时分别评估了该策略。与酸接触,LLZO形成了一个对电导率有益影响的Libo 2层。对于llzo粉末,酸处理在烧结后产生了有希望的谷物结合的固体。掺入聚合物电解液中时,较高的离子电导率表明Libo 2层对聚合物陶瓷接触的有益作用。另一个有希望的无机电解质是Li 1+X Al X Ti 2-X(PO 4)3(LATP),其易于处理和高电导率被其不稳定性与锂金属所遮盖。作为保护LATP材料的一种策略,它已插入不同的聚合物电解质矩阵中。虽然复合材料通常在材料之间表现出较差的协同作用,但对于多种植者来说,有一些令人鼓舞的结果,尤其是高转移数量。总而言之,这些结果为了解如何使用陶瓷电解质制造功能性的全州电池提供了一步,以及在陶瓷和复合电解质中量身定制表面的重要性。
简介。所得的涂漆金属复合物[1]包括具有炸弹 - 形式LOI NC5HI 3 04的低聚乙醇醛醛链,形成与银离子的协调连接。溶液中络合物的颜色的形成(从紫色到咀嚼的奥拉努斯)取决于与kg相关的基本肾脏的数量,紫色的颜色对应于一个协调键,橙色 - 雷德 - 雷德 - 红色 - 从4到6个相似的连接。寡聚链的形成 - 运动金属的主要成分 - 一个相当复杂的过程,显然是两倍指标,具体取决于溶液的pH和乙醇胺的比例:: formaldeydeyde。在其他启动中心的孵化环境中的存在,这些中心是自由氨基的,它们是DNA碱基的非群落中的存在,在启动乙醇胺甲醛层链形成时引入了不确定性,以及在已经形成的链链的阶段或分支的阶段。此外,甲醛的凝结(显然,在访问基本组方面)也可以以二极管的形式表现出来[2],该形式能够调整我们在[1]中提出的链电路。因此,在开发获得彩绘dnason的最佳状态的一般背景下,我们专门研究了金属络合物组件与其霸道的相互作用的问题。另外,该作品在建立染色的探针方面都呈现了单个包裹的DNA的结果,具体取决于Basia Incle的各种条件,并选择所需的DNZZOND修改水平。材料和方法。1,2)或在0.03 M硼酸缓冲液,pH 8.5(图在“ Silufol UV254”板上的初始和修饰腺嘌呤的色谱法是用军事缓冲液的引用为0.1 m na,pH 7.5(图>在“ Silufol UV254”板上的初始和修饰腺嘌呤的色谱法是用军事缓冲液的引用为0.1 m na,pH 7.5(图4)。所施加的材料的量为1-2μg。在FN1纸(德国)上色谱法期间,它们还使用了0.03 m的浮雕缓冲液。对于颜色绘画,色谱图在干燥后用氮气扇形浸渍在同一缓冲液中的浓度为0.5 mg/ml。在VII1 Chemisk的反射UFSTE ULTRA中,在薄膜“ Mikhitiso Pan”上对板的摄影登记进行了。纸色谱图上荧光斑点W6i'iiggullt *a v'ut *i *w o div>
高山蟑螂凝胶 WHIT-MIRE MICROGEN 499-507 DINOTEFURAN AVERT 蟑螂凝胶 WHIT-MIRE MICROGEN 499-410 阿巴菌素 AVERT DF 诱饵 WHIT-MIRE 499294 阿巴菌素 AVITROL AVITROL 11649-7 氨基吡啶 BARRICADE 4FL SYNGENTA 100-1139 PRODIAMINE BAYER COMPLETE INSECT KILLER BAYER 92564-12 吡虫啉,B-氯氟氰菊酯 JT EATON 驱鸟剂 JT EATON 8254-5-56 聚丁烯 BUG B GONE CONTROL ORTHO 239-2718 联苯菊酯 ULD BP 100 WHIT-MIRE MICROGEN 499-452 除虫菊酯,胡椒丁醚技术,N -- 辛基双环庚烯二甲酰亚胺,精制石油 CONTRAC BELL LABS 1245579 溴敌隆 **** 直到 2024 年 12 月 CY-KICK WHIT-MIRE MICROGEN 499470 氯氟氰菊酯 DELTA DUST BAYER 432-772 溴氰菊酯需求 CS SYNGENTA 100-1066 氯氟氰菊酯 DRAX 蚂蚁诱饵凝胶 WATERBUR Y 94444-31 正硼酸 DRIONE DUST BAYER 432-992 除虫菊酯 ECO EXEMPT D DUST 杀虫剂豁免 N/A 苯乙基丙酸酯 ECO 豁免 G 豁免 N/A 丁香酚、百里香油 ECO 豁免 IC3 豁免 N/A 迷迭香油、薄荷油、香叶醇 ECO 豁免 JET 豁免 N/A 羟基、2-苯乙基丙酸酯、迷迭香油 FASTRAC BELL LABS 12455-95 溴虫腈 GENTROL IGR ZOECON 2724-351 HYDROPRENE 诱饵组 9688-271-8845 DINOTEFURAN MAXFORCE COMPLETE 蚂蚁诱饵 BAYER 432-1255 HYDRAMETHYLNON MAXFORCE 蟑螂诱饵 FC 管 BAYER 432-1259 氟虫腈 MAXFORCE FC 蟑螂诱饵 BAYER 432-1257 氟虫腈 MERIT 25 WSP BAYER 3125-439 吡虫啉 MILESTONE CORTEVA 62719-519 2-吡啶羧酸三异丙醇铵盐,4-氨基-3,6-二氯 ORYZALIN 4 PRO QUALI-PRO 66222-207 ORYZALIN ORTHO HOME DEFENSE ORTHO 239-2717 联苯菊酯,ZETA-氯氰菊酯 ORTHO WEED B GONE ORTHO 1021-1582-239 利芬维酸 PCQ BELL LABS 12455-500 03-AA 敌敌畏 PENDULUM AQUA CAP BASF 241-416 苯并噻嗪 PHANTOM BASF 241392 氯吡啶 PT WASP FREEZE 2 MICROGEN 499-550 丙炔菊酯
肾脏病,透析和肾脏移植部;法国淀粉样蛋白病的参考中心和其他单克隆IG沉积物,大学医院,POITIERS,法国单克隆肾上腺病具有肾脏意义(MGRS)是指由分泌的Monoclonal Ig(Migig(Migig)引起的肾脏疾病的小型B-cell Clone的关联,肾脏不适的肾脏疾病与肾脏差异有关。肿瘤负担的肾脏病变受肿瘤负担的独立,受MIG的物理化学特征的约束,涉及直接(MIG沉积或沉淀)或间接(自身抗体活性,补体活化激活)机制。与MGRS相关的肾脏疾病的频谱广泛,涵盖了拟南芥疾病(Fanconi综合征,晶体储存组织细胞增多症)和肾小球疾病。后者根据肾小球沉积物的组成和超结构外观分为三类:1)肾小球病(GP),带有有组织的MIG沉积物(免疫球蛋白[AL和AH}溶质膜[Al and ah} 8oloidisis [Al and ah} 8oloilidisis,Cyoglobobulobulic ogglobulic gp,Cyroglobulic GP,Immunotactactoid Gp,Light Chapoid Gp,Light Chandelline Cyry)Cyry)compy-Cyry)pody pody pody; 2)具有非组织沉积物的GP(单克隆IG沉积疾病[LCDD,HCDD,LHCDD],带有MIG沉积物[PGNMID]的增殖性肾小球肾炎[PGNMID]); 3)无IG沉积的GP(与MIG相关的C3GP和血栓性微血管病)。通过分析肾脏症状,尤其是蛋白尿,以及存在暗示性的肾上腺外表现,提出了每种特有MGRS相关的肾脏疾病的诊断。在大多数情况下,需要进行轻度,免疫荧光和电子显微镜研究,有时需要通过细胞瘤分析完成,在大多数情况下进行诊断确认是需要进行的。有必要识别和定量致病性MIG(SPEP,UPEP,血清和尿液免疫固定,无血清光链)的详细血液学检查,并用于表征下面的克隆(骨髓流式细胞仪,细胞遗传学)。敏感技术,例如基于RNA的Ig库测序,可能可用于检测微妙的克隆。早期诊断和通过以克隆为目标的化学疗法快速实现深血液学反应是影响长期肾脏和患者结局的主要因素。对浆细胞克隆的处理主要依赖于硼酸和基于抗CD38单克隆抗体的方案,这些方案不需要剂量适应,并且在肾脏损害患者中具有有利的疗效/毒性比。肾移植是选定的终末期肾脏疾病患者的宝贵选择,如果在手术之前已经实现了深层稳定的血液学反应(≥VGPR)。
缩写:3D,三维;ABA,氨基苯硼酸;ACC,氨基羧甲基壳聚糖;ACNC,乙酰化纤维素纳米晶体;AF,纤维环;AF127,醛封端的普卢兰尼克 F127;AG-NH2,琼脂糖-乙二胺共轭物;Ag-CA,羧基化琼脂糖;AHA,醛基透明质酸;AHAMA,甲基丙烯酸酯化醛基透明质酸;AHES,醛基羟乙基淀粉;ALG,海藻酸钠;AMP,抗菌肽;APC,抗原呈递细胞;ASF,乙酰化大豆粉;AT,苯胺四聚体;ATAC,2-(丙烯酰氧基)乙基三甲基氯化铵;ATRP,原子转移自由基聚合;Azo,偶氮苯;家蚕,Bombyx mori;BA,硼酸;BCNF,氧化细菌纤维素纳米纤维;Bio-IL,生物离子液体;BMP-2,骨形态发生蛋白 2;BSA,牛血清白蛋白;BTB,硼砂-溴百里酚蓝;Ca-FA,CaCl 2 -甲酸;CA,氰基丙烯酸酯;Cat,含儿茶酚的多巴胺-异硫氰酸酯;Cat-ELPs,儿茶酚功能化的 ELR;CBM,纤维素结合模块;CD,环糊精;CD-HA,β-CD 修饰的透明质酸;CDH,碳酰肼;cGAMP,环状鸟苷单磷酸-腺苷单磷酸;CH,胆固醇半琥珀酸酯;CHI-C,儿茶酚共轭壳聚糖; CL/WS2,二硫化钨-儿茶酚纳米酶;CMs,心肌细胞;CMCS,羧甲基壳聚糖;CNC,纤维素纳米晶体;CNF,纤维素纳米纤维;CNT,碳纳米管;COL,胶原蛋白;CPEs,化学渗透促进剂;CS,硫酸软骨素;CsgA,Curli 特异性纤维亚基 A;CS-NAC,壳聚糖-N-乙酰半胱氨酸;CSF,脑脊液;CTD,C 端结构域;CtNWs,几丁质纳米晶须;D-MA,甲基丙烯酸酯化羟基树枝状聚合物;DAHA,二醛-透明质酸;DCs,树突状细胞;DDA,葡聚糖二醛;dECM,脱细胞 ECM; DEXP,地塞米松磷酸二钠;Dex,葡聚糖;DF-PEG,双醛功能化聚乙二醇;DNNA,双网络神经粘合剂;DOPA,L-3,4-二羟基苯丙氨酸;DOX,阿霉素;DPN,脱细胞周围神经基质;DST,双面胶带;E-tattoo,电子纹身;E. coli,大肠杆菌;ECG,心电图;ECM,细胞外基质;ePTFE,聚四氟乙烯;ELP,弹性蛋白样多肽;ELRs,弹性蛋白样重组体;EMG,肌电图;EPL,ε-聚赖氨酸;EPS,胞外多糖;ER,内质网;FDA,食品药品监督管理局;FGFs,成纤维细胞生长因子;FibGen,京尼平交联纤维蛋白凝胶; FITC,硫氰酸荧光素;FS-NTF,纳米转移体;呋喃,糠胺;GA,没食子酸;GAG,糖胺聚糖;GC,乙二醇壳聚糖;Gel-CDH,碳酰肼修饰明胶;GelDA,多巴胺修饰明胶;GelMA,明胶-甲基丙烯酰;GI,胃肠道;GRF,明胶-间苯二酚-甲醛;GRFG,明胶-间苯二酚-甲醛-戊二醛;H&E,苏木精和伊红;HA,透明质酸;HA-Ac,透明质酸-丙烯酸酯;HA-ADH,己二酸二酰肼修饰透明质酸;HA-ALD,醛修饰透明质酸;HA-NB,硝基苯衍生物修饰透明质酸;HA-PEG,透明质酸-聚乙二醇;HA-PEI,透明质酸-聚乙烯亚胺;HA-SH,硫醇化透明质酸;HAGM,透明质酸甲基丙烯酸缩水甘油酯;HaMA,甲基丙烯酸酯化透明质酸; HAp,羟基磷灰石;HBC,羟丁基壳聚糖;HES,羟乙基淀粉;HFBI,疏水蛋白;HIFU,高强度聚焦超声;hm-Gltn,疏水改性明胶;HPMC,羟丙基甲基纤维素;HRP,辣根过氧化物酶;Hypo-Exo,缺氧刺激的外泌体;ICG,吲哚菁绿;iCMBAs,基于柠檬酸盐的受贻贝启发的生物粘合剂;IGF,胰岛素样生长因子;iPSC,多能干细胞;IPTG,β-d-1-硫代半乳糖苷;ITZ,伊曲康唑;IVD,椎间盘;JS-Paint,关节表面涂料;KGF,角质形成细胞生长因子;KaMA,甲基丙烯酸酯化κ-角叉菜胶; LAP,苯基-2,4,6-三甲基苯甲酰膦锂盐;LCS,液晶;LCST,低临界溶解温度;LDH,层状双氢氧化物;LDV,亮氨酸-天冬氨酸-缬氨酸;LM,液态金属;m-AHA,单醛透明质酸;MA,甲基丙烯酸酐;MADDS,粘膜粘附药物递送系统;MAP,贻贝粘附蛋白;MATAC,2-(甲基丙烯酰氧基)乙基三甲基氯化铵;mAzo-HA,mAzo 修饰透明质酸;MBGN,介孔生物活性玻璃纳米颗粒;MCS,修饰茧片;MDR,多重耐药;mELP,甲基丙烯酰弹性蛋白样多肽;MeTro,甲基丙烯酰取代的原弹性蛋白;Mfp,贻贝足蛋白; MI,心肌梗死;MMP,基质金属蛋白酶;MN,微针;MPs,单分散微粒;MRSA,耐甲氧西林金黄色葡萄球菌;MSC,间充质干细胞;NB,N-(2-氨基乙基)-4-[4-(羟甲基)-2-甲氧基-5-硝基苯氧基]-丁酰胺;NFC,纳米纤维化纤维素;NGCs,神经引导导管;NHS,N-羟基琥珀酰亚胺;NIR,近红外光;NPs,纳米粒子;NTD,N-端结构域;ODex,氧化葡聚糖;OHA-Dop,多巴胺功能化氧化透明质酸;OHC-SA,醛功能化海藻酸钠;OPN,骨桥蛋白; OSA-DA,多巴胺接枝氧化海藻酸钠;OU,口腔溃疡;p-AHA,光诱导醛透明质酸;PAA,聚丙烯酸;PAE,聚酰胺胺-环氧氯丙烷;PAMAM,胺基端基第五代聚酰胺多巴胺;PBA,苯基硼酸;PCL,聚己内酯;PDA,聚多巴胺;PDMS,聚二甲基硅氧烷;PDT,光动力疗法;PEA,2-苯氧乙基丙烯酸酯;PEG,聚乙二醇;PEDOT,聚(3,4 乙烯二氧噻吩);PEI,聚乙烯亚胺;PEGDMA,聚乙二醇二甲基丙烯酸酯;PEMA,2-苯氧乙基甲基丙烯酸酯;PepT-1,肽转运蛋白-1;PG,焦性没食子酚;PGA,聚乙醇酸;pHEAA,聚(N-羟乙基丙烯酰胺);PMAA,羧甲基功能化聚甲基丙烯酸甲酯;PSA,压敏粘合剂;PTA,光热剂;PTT,光热疗法;PVA,聚乙烯醇;QCS,季铵化壳聚糖;rBalcp19k,重组白脊藤 cp19k;RGD,精氨酸-甘氨酸-天冬氨酸;rGO,还原氧化石墨烯; RLP,类弹性蛋白多肽;rMrcp19k,Megabalanus rosa cp19k;ROS,活性氧中间体;rSSps,重组蜘蛛丝蛋白;SCI,脊髓损伤;SCS,蚕茧片;SDBS,十二烷基苯磺酸钠;SDS,十二烷基硫酸钠;SDT,声动力疗法;SF,丝素;sIPN,半互穿聚合物网络;S. aureus,金黄色葡萄球菌;STING,干扰素基因刺激剂;SUPs,超荷电多肽;SY5,外皮蛋白抗体;TA,单宁酸;TEMED,四甲基乙二胺;TEMPO,2,2,6,6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素; Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。
©Afyon KocatepeüNiversItesi抽象的细菌次生代谢物可用于控制微生物。在这项研究中,已经确定了来自Apis Mellifera和Varroa驱灾子的芽孢杆菌分离株的抗菌活性特性。根据椎间盘扩散方法研究了芽孢杆菌物种对某些细菌和致病酵母菌(念珠菌)的抗菌活性。研究的结果是,研究中使用的芽孢杆菌分离株的继发代谢产物以不同的速率抑制了测试的微生物的发展(1.1-8.4 mm抑制区)。两个分离株GAP2(枯草芽孢杆菌)和GAP9(苏云金芽孢杆菌)显示出较高的抗菌活性。从细菌分离株中分离的大多数代谢产物都对大肠杆菌ATCC2471和Marcescens ATCC13880(p <0.05)敏感。确定从GV6,GV7,GAP7,GAP8,GAP11,GAP13和GAP15分离株获得的产物不会影响实验中使用的任何细菌(P <0.05)。人们认为,产生次级代谢产物的芽孢杆菌菌株,尤其是GAP2和GAP9分离株,可能有可能用于医学,兽医,农业和食品工业的各种应用中的各种应用中。Anahtar Kelimeler:抗菌;抗真菌;芽孢杆菌;细菌;圆盘扩散测定;微生物学。