摘要:我们研究了在马尔可夫和非马尔可夫状态下,量子比特与微观碰撞模型建模的环境接触时产生的不可逆熵。我们的主要目标是为非马尔可夫动力学与负熵产生率之间关系的讨论做出贡献。我们采用了两种不同类型的碰撞模型,它们可以或不保留系统与进入的环境粒子之间建立的相关性,而它们都通过从环境到系统的信息回流而具有非马尔可夫性质。我们观察到,前一种模型(其中系统与环境之间的相关性得以保留)在瞬态动力学中产生负熵产生率,而后一种模型始终保持正熵产生率,即使与相应的马尔可夫动力学相比,收敛到稳态值的速度较慢。我们的结果表明,负熵产生率背后的机制不仅仅是通过信息回流的非马尔可夫性,而是通过已建立的系统-环境相关性对其的贡献。
“未来纳米级碰撞模型?一切皆有可能!但有一件事是肯定的:为分析师提供所有可用的计算能力,那么他或她将在极短的时间内用完它。” Eberhard Haug
“未来的纳米级碰撞模型?一切都还未确定!但有一件事是肯定的:为分析师提供所有可用的计算能力,那么他或她将在极短的时间内用完它。” Eberhard Haug
“未来的纳米级碰撞模型?一切都还未确定!但有一件事是肯定的:为分析师提供所有可用的计算能力,那么他或她将在极短的时间内用完它。” Eberhard Haug
我们考虑由共享经典或量子关联的局部平衡储存器驱动的热机。储存器由所谓的碰撞模型或重复相互作用模型建模。在我们的框架中,两个储存器粒子最初以热状态制备,通过幺正变换相互关联,然后与形成工作流体的两个量子子系统进行局部相互作用。对于特定类的幺正器,我们展示了应用于储存器粒子的变换如何影响传递的热量和产生的功。然后,我们计算随机选择幺正器时的热量和功的分布,证明总交换变换是最佳的。最后,我们根据机器微观成分之间建立的经典和量子关联来分析机器的性能。
量子电池是用于存储能量的量子系统,以稍后由外部代理以工作形式提取以执行某些任务。在这里,我们通过通过反谐波拉曼构型获得的反杰伊斯卡明斯相互作用介导的碰撞模型来研究混合量子电池的充电。电池由两个不同的组件组成:固定的无限尺寸单量子系统(例如谐波振荡器)和小尺寸的流(例如Qutrits)。充电协议包括在外部能源的作用下,一次将谐波振荡器与流的每个元素与流的每个元素相互作用,而目标是分析谐波振荡器和QUTRIT的充电如何受流的相关性能的影响。
“分析已解决的积聚星系作为光晕调查的关键工具”(Arrakihs)任务将在每年的天空中成像50个平方度,直至前所未有的超低表面亮度(SB),同时在两个可见的频段中(HST F475X:380至630 NM和EUCLID NM和EUCLID)同时使用带(Euclid Y:920至1230 nm和Euclid J:1169至1590 nm)。这些图像将使我们能够解决λ-Cold暗物质(λCDM)宇宙学模型中的重大问题。尤其是,如果我们的宇宙中的暗物质与标准λCDM一样偏离了冷和无碰撞模型,那么预计卫星质量功能,卫星合并率以及在矮人星系周围出现的恒星流的普遍性将受到极大的抑制。由于广泛的视野调查,由于大气背景,很难从地面上实现到极低的SB限制,因此无法进行这些观察测试。相反,Arrakihs将在低地轨道上的迷你卫星上使用创新的双眼望远镜组件。这项调查将导致超低SB SB外层流图像的第一目录,以提供一个体积有限的和质量有限的星系样品,例如附近宇宙中的银河系。Arrakihs任务的定义和独特特征是,它将这些系统成像为前所未有的表面亮度,在31 mag /arcsecond 2中,在可见波长中分辨率为0.8 ARCSEC(FWHM),并在近距离Indrrrrrared中以1.25 Arcsec(FWHM)分辨率为30 mag /arcsecond 2。Arrakihs完全符合ESA的“宇宙视野”科学重点。Arrakihs任务利用具有高技术准备水平(TRL)的空间示威技术以非常低的风险姿势进入开发。首先,Arrakihs将使用双眼ISIM-170相机,该相机已经在太空中进行了验证,并成功证明了适用于SmallSats的最佳图像质量和空间分辨率。Arrakihs任务所需的检测器升级也基于适合飞行的技术。扩展的曝光将需要基于已经开发的相同技术(提高要求)的指向稳定升级,并为Euclid和Cheops任务开发了稳定升级。有效载荷和检测器冷却技术解决方案的热机械稳定性也是从已经为Euclid和Cheops任务开发的类似解决方案中借用的。ISIM-170摄像机可以安装在几个迷你 - 卫星平台上,这些平台很容易根据当前在低地轨道(LEO)中运行的成功版本进行调整。最后,由Arrakihs联盟进行的最新模拟对我们技术达到超低SB水平的能力和成功完成Arrakihs任务的科学目标所需的高空间分辨率的能力非常高度。特别是,Arrakihs将在“宇宙愿景”计划的核心的四个关键问题中提高我们的知识:“宇宙的基本物理定律是什么?”和“宇宙是如何产生的,它是什么?”此外,Arrakihs将补充新一代的巨型基础和空间观测站。JWST将在最高红移时观察星系形成和进化的最早阶段。鲁宾天文台,罗马和欧几里得将在中间和高红移时为数百万星系提供图像和光谱。arrakihs将通过开创了超低SB的附近宇宙的前所未有的系统探索,并以极佳的空间分辨率从可见的波长到红外波长来补充对遥远宇宙的这些深入的广泛观察。总而言之,ESA的F-Mession计划提供了一个独特的机会,可以在短时间内使用太空传播平台进行引人注目的科学,并具有负担得起的预算。因此,我们设计了具有三个定义特征的Arrakihs任务:1。Arrakihs使命是科学,其重点是对我们对现代宇宙中现有紧张局势的理解产生重大影响的巨大潜力。Arrakihs任务的核心 - 对未开发的超低SB宇宙的观察,只能由于由于大气而引起的基于地面的SB敏感性的局限性才能完成。由于该任务的科学目标需要在〜1 ARCSEC分辨率的非常宽的区域中实现非常低的SB,因此无需大型光圈摄像头。相反,最佳有效载荷是一台小型的多光谱摄像头,在广阔的视野中具有出色的光学质量。