数字技术的摘要最新进步,包括人工智能(AI),物联网(IoT)以及信息和通信技术(ICT),正在将房屋转变为相互联系的服务生态系统。然而,由于术语不一致,有关家庭技术的论述仍然分散。本文解决了缺乏框架,研究智能和非智能房屋之间的区别以及预测连通性和自动化增长。专家(21)参加了2021年的在线调查和访谈,探索了基本和智能房屋的语言,结构以及技术/社会方面。定量调查数据和定性访谈分析对定义更智能的房屋,采用障碍以及建立通用定义的框架改进产生了见解。这项研究强调了在智能家居领域协调语言和概念的紧迫性,从而揭示了用户理解差距和可用性问题作为障碍。这弥合了消费者参与和技术采用的差距。
GWP EF AD E ············································ (1) 式中: E —— 每功能单位或单元过程的温室气体排放量,以二氧化碳当量(CO 2 e)表示; AD —— 温室气体活动数据,单位根据具体排放源确定; EF —— 温室气体排放因子,单位与活动数据的单位相匹配; GWP —— 全球变暖潜势,以政府间气候变化专门委员会(IPCC)最新发布数据为准。
政府与公共事务部。3-1-1,Hino-dai,Hino-Shi,东京191-8660,日本电话: +81-42-586-5494传真: +81-42-42-586-4382 URL:https://www.hino-global.com/ https://www.hino-global.com/
阿德莱德机场率先实现碳中和 阿德莱德机场已成为澳大利亚首个实现碳中和的大型机场。自 2018 年以来,该机场通过提高能源效率、增加现场可再生能源以及购买 100% 可再生能源等活动,已将碳排放量减少了近 90%。阿德莱德机场现已实现碳中和里程碑,此前,该机场通过 Canopy(绿化澳大利亚的一部分)与南澳大利亚高勒山脉的一个土地再生项目购买经过认证的澳大利亚碳信用单位。这些信用额度将抵消 2024/25 年与航站楼内的天然气和运营车辆的燃料使用有关的剩余范围 1 碳排放。这些抵消措施只是一项临时措施,在此期间,机场将实施计划,将航站楼内的天然气厂改为电力厂,作为即将到来的资产更换周期的一部分,并将其剩余的车队车辆替换为混合动力或电动替代品。阿德莱德机场通过其可再生能源协议,从 2024 年 1 月 1 日起消除了与电力使用相关的范围 2 排放。董事总经理布伦顿·考克斯表示,阿德莱德机场在整体可持续发展方面还有很长的路要走,但这是经过数年努力制定和实施脱碳战略后取得的一项值得骄傲的成就。考克斯先生说:“我们的战略重点是通过升级到更高效的替代品、增加现场可再生能源发电以及通过机场的电力合同支持南澳大利亚的可再生能源项目来降低碳强度。”“阿德莱德机场的目标是到 2030 年将范围 1 和 2 的排放量减少 100%,到 2050 年实现净零碳排放。我们很高兴能够在 2030 年之前实现范围 1 和 2 的目标,但要实现我们的净零排放目标还有很长的路要走,其中包括往返阿德莱德的航班的排放。 “可持续航空燃料的开发和使用对于实现净零排放至关重要,11 月,我们与南澳大利亚州政府、Zero Petroleum 和澳洲航空联手评估了在怀阿拉开发低碳可持续航空燃料生产设施‘Plant Zero.SA’的可行性。” “阿德莱德机场近期的其他举措包括升级航站楼和跑道区域的照明设备(包括 LED),以及优化我们的工厂和设备以减少能源使用和排放。” 阿德莱德机场国内和国际航站楼屋顶上 3,700 多块太阳能电池板的安装也即将完成,这几乎是我们现有太阳能系统的三倍。 阿德莱德机场的所有电力均来自可再生能源,这些电力由现场太阳能和南澳大利亚 Iberdrola 的 Lake Bonney 风力发电场共同产生。
4该框架是考虑到领先的风险管理理论的设计。它建立了由赞助组织委员会(COSO)(领先的风险管理智囊团)发布的控制模型。COSO控制模型概述了组织如何开发报告控制结构。该模型被广泛用于内部财务审计和控制措施,因此该框架与许多PSO上已经存在的框架保持一致。5个文档或数据可以根据其状态,状况或位置自动保护。例如,他们可能会移至特定位置,或者一旦到达特定阶段,就可以将其读取,从而防止没有特定权限的进一步修订。此自动化的“锁定”过程是由像工作流这样的标准触发的,而不是手动应用于文件本身。
工作组对监视方法的全面工作是根据对反托拉斯指南的最严格遵守进行的,确保了整个项目期间的最高法律合规性标准。专业合规律师在工作组的每个会议上都在场,担任反托拉斯法规的警惕监护人,并确保在项目开发的各个阶段精心维护合规性。这些法律专家始终强调遵守会议的预定议程的重要性,并避免了任何可以解释为不适当或潜在的反竞争的讨论或评论。鉴于该项目的协作性质,该项目涉及活跃于汽车价值链不同级别的竞争对手,因此反信任律师对披露任何商业敏感的信息进行了严格的禁令。其中包括但不限于个人公司的价格,利润率,成本,市场预测,生产数据,产能细节,投资计划,业务策略,招标信息和/或合同细节。律师还确保讨论避免了与个人供应商或客户有关的事项,以维持中性且竞争友好的环境。
3使用热量值计算电力消耗到标准煤等效物。在工业电气化率的计算中排除了作为原料消耗的能量。4除非另有说明,否则本报告中的所有建筑物仅涉及建筑物运营所产生的能源消耗和排放。
碳中和转型中心三原 三原机械制造所的先进碳中和项目于 2022 年 6 月启动,旨在实现我们位于日本广岛县三原市的三原机械制造所的零二氧化碳排放。截至 2023 财年末,我们已将该工厂每年约 10 千吨的二氧化碳排放量减少了 97.7%。* 这是通过在厂区内安装的太阳能电池板的运行、严格的节能和精简工作以及电动汽车的使用实现的。此外,我们已在整个集团内分享了在此项目中创建 MAC 曲线所获得的技术。目前,仍有 228 吨二氧化碳排放量有待解决。* 但是,我们将以此为契机,开发旨在实现碳中和的技术,例如热源电气化和燃料转换。我们还将扩大努力,将三原机械制造所转变为碳中和转型中心三原,在那里我们将积极整合并分阶段实施脱碳解决方案。 *包括估计值。
病原体和呼吸道中正常菌群的影响是问题,缺乏或无法获得病原体测试也是一个重要原因。近年来,分子诊断的进展,尤其是基于聚生物酶链反应(PCR)技术,临床宏基因组学,群集定期间隔短的短质体重复序列(CRISPR)和Matrix辅助激光质量质量质量的诸如多生物酶链反应(PCR)技术,临床宏基因组学(PCR)技术,临床上的短质重复序列(MALDICLY)(MALD-MALDICLY),诸如分子诊断的进展,尤其是新的方法,例如多种体生物链反应(PCR)技术,临床上的短质体重复序列(CRISPR)和MATRIX辅助激光质量群体,改善了呼吸道感染的病原体检测能力。以基于多重PCR技术为例的GenExpert检测方法,它改善了活性结核病的诊断,其对利福平 - 静脉肺结核的敏感性和特异性分别为92%和98%。2-