™ 工艺使这些先进的陶瓷材料无需软金属粘合剂即可组合,而使用传统烧结技术的碳化钨/钴则需要软金属粘合剂。ROC 工艺使喷嘴能够使用非常短的固结周期形成,从而最大限度地减少陶瓷颗粒在长时间暴露于高温时自然增大的趋势。消除金属粘合剂并保持超细晶粒尺寸均有助于实现最佳喷嘴性能。最终得到的是一种极其耐用的材料,能够强烈抵抗磨料和腐蚀磨损。
AAbstr bstract act.. 在过去十年中,机器学习越来越吸引多个科学领域的研究人员,特别是在增材制造领域。同时,这项技术对许多研究人员来说仍然是一种黑箱技术。事实上,它允许获得新的见解,以克服传统方法(例如有限元方法)的局限性,并考虑制造过程中发生的多物理复杂现象。这项工作提出了一项全面的研究,用于实施机器学习技术(人工神经网络),以预测 316L 不锈钢和碳化钨直接能量沉积过程中的热场演变。该框架由有限元热模型和神经网络组成。还研究了隐藏层数和每层节点数的影响。结果表明,基于 3 或 4 个隐藏层和整流线性单元作为激活函数的架构可以获得高保真度预测,准确率超过 99%。还强调了所选架构对模型准确性和 CPU 使用率的影响。所提出的框架可用于预测模拟多层沉积时的热场。
线性球轴承 (LBB) 系列尺寸测量探头专为质量控制和计量应用中的高精度和可重复测量而设计。测量探头内的 LBB 可最大限度地减少径向游隙和摩擦,实现超高精度测量。轴承组件利用两排圆周微型球,由固定器固定到位。球位于非旋转柱塞上,柱塞硬化至洛氏 65 级,镀硬铬并经过精密研磨,可实现最佳重复性和抗压痕性。柱塞的接触端有一个可拆卸的碳化钨球头,带有 AGD 标准 4-48 UNF-2A 螺纹。柱塞和轴承封装在圆柱形外壳中,手工打磨并安装到滚珠轴承组件上。精密配合可提供出色的测量头重复性。由于轴承和外壳的硬度基本匹配,柱塞可以更好地承受侧向载荷,从而延长设备寿命。LVDT 配置
WC-Co 金属陶瓷,也称为硬质合金,是摩擦学应用中最广泛使用的硬质材料。W 和 Co 价格的不断上涨以及经济方面的不利因素提醒人们 WC 和 Co 需要被取代。WO 3 是一种有毒物质,在碳化钨应用过程中在空气中形成,在 750°C 以上升华,在室温下可溶于水。Co 的取代还受到其活性氧化物 Co 3 O 4 的潜在致癌性质的驱动。铌是一种与钨类似的难熔金属,可以部分甚至完全取代硬质合金中的钨。NbC 是一种熔点为 3522°C 的难熔碳化物,它具有热稳定性,在 Fe、Ni 和 Co 中的溶解度非常低。此外,相关氧化物 Nb 2 O 5 具有热力学稳定性,熔点为 1512°C。由于 Co 和 NbC 的润湿性相对较差,在 WC-Co 中用 NbC 替代 WC 必然需要同时替换 Co 粘合剂。NbC-Ni 和 NbC-Fe 或 NbC-Mo 基材料将成为 WC-Co 材料的“非关键且无害”替代品。
摘要 保护部件免受磨损和腐蚀是延长其使用寿命的常用方法。这可以通过在部件上涂覆硬面材料来实现。常见的涂层由碳化钨或钴铬合金(也称为司太立合金)等材料组成。硬面材料可以通过等离子焊接或激光熔覆等焊接方法沉积。基材到硬面层的离散变化会导致裂纹和碎裂。研究表明,当使用功能梯度材料在基材和硬面之间建立平滑过渡时,开裂风险会降低。文献中已经知道从奥氏体钢到钴铬合金的等级。然而,没有关于奥氏体-铁素体双相钢作为基材的知识。因此,本研究旨在证明采用新方法从双相钢到钴铬合金的功能梯度材料的可行性。通过使用基于粉末的定向能量沉积,可以增材制造具有平滑材料过渡的梯度材料。通过金相学检查开裂和孔隙率。使用显微硬度测量以及能量色散X射线光谱和X射线荧光分析化学成分来验证构建策略。
Feather Touch 探头专为测量汽车挡风玻璃、电视显像管、药瓶、机电元件和塑料零件等精密表面而设计。传统探头施加的尖端力约为 0.7N,而 Feather Touch 在水平位置使用时仅施加 0.18N。通过将自然弹性的传统护罩替换为公差较小的压盖,可以实现这一降低。对于气动版本,通过压盖的空气泄漏被限制在 1 巴时小于 2.5 毫升/秒,以最大限度地降低被测量表面受到污染的可能性。尽管空气流量很小,但探头内的轴承会不断被清洗,避免积聚灰尘(建议使用过滤空气)。可更换的尼龙尖端用于防止表面损坏,但测量热玻璃时,可以安装碳化钨尖端。电缆上的编织钢丝网覆盖层为停机时间至关重要的应用提供了额外的保护。为了获得极低的力,Feather Touch 探头可以不带弹簧。前进和后退运动由气动/真空缩回激活,但调节气压可使所有探头具有相同的尖端力,并在整个测量范围内保持恒定。如果探头垂直安装(尖端朝上),则缩回是由移动部件的自重完成的,无需真空。
描述和应用 AI-1706 是钴基表面合金中最普遍使用的等级,在很宽的温度范围内,对因机械和化学降解而产生的单一或综合磨损具有出色的抵抗力。AI-1706 是一种坚韧、耐冲击和耐腐蚀的合金,在高温压力下不易热裂,并具有出色的抗咬合性能。它在红热下可抵抗碎裂、剥落和氧化,同时保持合理的延展性和良好的高温硬度。该合金的摩擦系数较低,即使长时间暴露在 1000°C 以上的温度下也能恢复到室温硬度。AI-1706 几乎不受大多数常见腐蚀性化学品以及大气腐蚀的影响。在空气中加热时,合金在 400°C 时开始失去光泽,但直到加热到 750°C 以上时才会发生明显的氧化。由于在初始加热循环后形成了紧密粘附的氧化皮,因此随后的氧化,高达 1000°C 时可以忽略不计。在 1000°C 以上的温度下,氧化更明显,但不会受到水分的明显影响。在 1000°C 以下,脱碳可以忽略不计。但是,熔融盐和碱金属碳酸盐和氢氧化物具有一定的腐蚀性,尤其是如果允许它们聚集并留在表面上。AI-1706 被认为易于用选定的碳化钨工具进行加工。
ATLLAS 高速飞行轻型先进材料的气动和热载荷相互作用 ATLLAS II 轻型先进结构上的气动热力学载荷 II BLOX4 第四激光氧化分析设备 C/C-SiC 碳纤维增强碳化硅复合材料 CMC 陶瓷基复合材料 CTE 热膨胀系数(以 10 -6 °C -1 为单位) CVI 化学气相渗透 DGA 军备总局 DLR 德国空气和空间飞行中心 EDM 电火花加工 EDS 能量色散光谱 ESA-ESTEC 欧洲空间局 - 欧洲空间研究与技术中心 FAST 场辅助烧结技术 HP 热压 PCS 聚碳硅烷(SiC 前体) PIP 前体渗透和热解 PyC 热解碳 RMI 反应熔融渗透 SEM 扫描电子显微镜 SI 浆料渗透 SIP 浆料渗透和热解 SPS 放电等离子烧结 TT 热处理 UHTC 超高温陶瓷 UHTCMC 超高温陶瓷基复合材料 WC 碳化钨 ρ 密度(单位:g/cm 3 ) σ f 弯曲强度(单位:MPa) ε f 弯曲应变(单位:%) d 50 中值粒度(单位:µm) E 杨氏模量(单位:GPa) E f 弯曲模量(单位:GPa) K 1C 断裂韧性(单位:MPa.m 1/2 ) H v 硬度(单位:GPa)
摘要:各种切削刀具材料用于在极端应力、温度和/或腐蚀条件下对部件进行接触模式机械加工,包括钻孔、铣削车削等操作。这些苛刻的条件会产生非常高的应变率(比成型高一个数量级),这限制了切削刀具的使用寿命,尤其是单点切削刀具。碳化钨是最常用的切削刀具材料,不幸的是,其主要成分 W 和 Co 在材料供应方面存在高风险,并且被列为欧盟关键原材料 (CRM),应解决其可持续使用问题。本文通过及时的回顾,强调了 CRM 在机械加工切削刀具中的发展和使用趋势。本综述的重点及其动机由以下四个主题驱动:(i) 讨论新兴的混合加工工艺,这些工艺可提高性能并延长刀具寿命(激光和低温结合);(ii) 开发和合成新的 CRM 替代品以最大限度地减少钨的使用; (iii) 提高磨损工具的回收利用率;(iv) 在工业 4.0 框架、循环经济和网络安全制造中加速使用建模和仿真来设计耐用工具。需要注意的是,本文的范围不是代表一份关于机械加工切削刀具的完整详尽文件,而是提高人们的认识,为在机械加工工具中使用关键材料的创新思维铺平道路,目的是制定智能、及时的控制策略和缓解措施,以抑制 CRM 的使用。
摘要:牙体预备是牙体修复的基石,需要精确的准备和使用合适的旋转器械。牙钻是牙体预备过程中不可或缺的一部分,其设计、材料成分和应用都发生了重大变化。本文回顾了牙钻的类型、分类和应用,强调了它们的颜色编码识别系统。本文旨在全面了解这些工具,帮助临床医生优化其使用,从而有效、高效地进行牙体预备。I. 引言牙钻是牙体预备必不可少的旋转切割器械。它们有助于进行窝洞准备、牙冠塑形、修复体修整等。牙钻的适当选择会显著影响手术结果的质量和效率。了解牙钻设计、材料和颜色编码的细微差别对牙科专业人员至关重要。本文探讨了不同类型的牙钻、它们的设计变化、材料特性以及有助于识别的颜色编码系统。此外,本文还讨论了这些牙钻在临床实践中的应用。 1. 牙科车针的分类 牙科车针根据材料、柄类型、形状和粒度进行分类。 1.1 材料成分 1. 碳化钨车针: • 高刚性和锋利度。 • 非常适合切割金属和牙齿结构。 • 耐用且耐磨。 2. 金刚石车针: • 由涂有金刚石颗粒的钢柄组成。 • 用于精确切割和精加工。 • 有各种粒度可供选择。