摘要:高κ电介质是介电常数高于二氧化硅的绝缘材料。这些材料已经在微电子领域得到应用,主要用作硅 (Si) 技术的栅极绝缘体或钝化层。然而,自过去十年以来,随着宽带隙 (WBG) 半导体的广泛引入,如碳化硅 (SiC) 和氮化镓 (GaN),后硅时代开始了,这为高κ材料在这些新兴技术中的应用开辟了新的前景。在此背景下,铝和铪的氧化物(即 Al 2 O 3 、HfO 2 )和一些稀土氧化物(例如 CeO 2 、Gd 2 O 3 、Sc 2 O 3 )是有前途的高κ二元氧化物,可用作基于 SiC 和 GaN 的下一代大功率和高频晶体管的栅极介电层。本综述论文概述了用于后硅电子器件的高介电常数二元氧化物薄膜。特别地,重点关注通过原子层沉积在 WBG 半导体(碳化硅和氮化镓)上生长的高 κ 二元氧化物,无论是非晶态还是晶体膜。讨论了沉积模式和沉积前或沉积后处理的影响。此外,还介绍了这些薄膜的介电行为,并报告了一些应用于 SiC 和 GaN 晶体管的高 κ 二元氧化物的示例。强调了这些技术的潜在优势和当前的局限性。
摘要:电感耦合等离子体反应离子刻蚀 (ICP-RIE) 是一种选择性干法刻蚀方法,用于各种半导体器件的制造技术。刻蚀用于形成非平面微结构 - 沟槽或台面结构,以及具有受控角度的倾斜侧壁。ICP-RIE 方法结合了高精加工精度和可重复性,非常适合刻蚀硬质材料,例如 SiC、GaN 或金刚石。本文回顾了碳化硅刻蚀 - 介绍了 ICP-RIE 方法的原理、SiC 刻蚀结果和 ICP-RIE 工艺的不良现象。本文包括 SEM 照片和从不同的 ICP-RIE 工艺获得的实验结果。首次报道了向 SF 6 等离子体中添加 O 2 以及 RIE 和 ICP 功率的变化对工艺中使用的 Cr 掩模的刻蚀速率和 SiC/Cr 刻蚀选择性的影响。 SiC 是一种极具吸引力的半导体,具有许多优异的性能,通过亚微米半导体加工技术的进步可以带来巨大的潜在利益。最近,人们对 SiC 产生了浓厚的兴趣,因为它在电力电子领域具有广泛的应用潜力,特别是在汽车、可再生能源和铁路运输领域。
摘要:电感耦合等离子体反应离子刻蚀 (ICP-RIE) 是一种选择性干法刻蚀方法,用于各种半导体器件的制造技术。刻蚀用于形成非平面微结构 - 沟槽或台面结构,以及具有受控角度的倾斜侧壁。ICP-RIE 方法结合了高精加工精度和可重复性,非常适合刻蚀硬质材料,例如 SiC、GaN 或金刚石。本文回顾了碳化硅刻蚀 - 介绍了 ICP-RIE 方法的原理、SiC 刻蚀结果和 ICP-RIE 工艺的不良现象。本文包括 SEM 照片和从不同的 ICP-RIE 工艺获得的实验结果。首次报道了向 SF 6 等离子体中添加 O 2 以及 RIE 和 ICP 功率的变化对工艺中使用的 Cr 掩模的刻蚀速率和 SiC/Cr 刻蚀选择性的影响。 SiC 是一种极具吸引力的半导体,具有许多优异的性能,通过亚微米半导体加工技术的进步可以带来巨大的潜在利益。最近,人们对 SiC 产生了浓厚的兴趣,因为它在电力电子领域具有广泛的应用潜力,特别是在汽车、可再生能源和铁路运输领域。
增加了创新的合成和有机肥料和农药的使用,到2050取代传统合成产品的使用(与空间规划结合在一起)会产生这些产品的生产,运输和应用的排放。此外,创新产生的产量增加可以减少土地使用压力,避免森林砍伐和生物多样性损失。尽管存在权衡取舍,但预计传统合成产品的使用也有望减少污染和农业径流,而生物多样性的结果得到改善。其他有希望的创新可能有助于脱碳化农业化学投入的工业生产。
可回收食品技术对于长期载人航天任务至关重要。本研究将传统和替代太空食品与使用回收二氧化碳的非生物合成 (NBS) 系统进行了比较。以二氧化碳的电化学转化为起点,回顾了不同的碳水化合物合成途径。糖和甘油被视为最终产品。分析了三次往返任务,共有 5 名机组人员,持续 3 年:国际空间站、月球和火星。等效系统质量 (ESM) 技术用于将 NBS 系统与通常储存的预包装食品、人工光培养的螺旋藻、氢氧化细菌 (HOB) 和微生物电合成 (MES) 进行比较。这允许对具有不同特征的系统的发射成本进行比较,包括设备质量、机载体积以及功率和散热要求。使用文献值通过质量和能量平衡估算功耗。NBS 系统的火星任务 ESM 估计在 10-30 吨以内。相比之下,螺旋藻的平均能耗为 65 吨,预包装食品的平均能耗为 35 吨,MES 的平均能耗为 25 吨,HOB 的平均能耗为 11 吨。据估计,NBS 与 HOB 和 MES 一起,是最节能的选择之一。NBS 系统的电能到食品的转换效率预计为 10-21%,单程碳产量高达 ~70%。虽然不建议将 NBS 应用于所有替代方案(即 HOB),但建议将其应用于预包装食品和螺旋藻基准。这些食品生产技术还可以帮助人类度过极端灾难。
摘要:合成了氧化钴(CO 3 O 4)装饰的碳化硅(SIC)纳米树阵列(称为CO 3 O 4 /sIC NTA)电极,并研究了用于微型 - 苏格体配件的应用。首先,由镍(Ni)催化化学蒸气沉积(CVD)方法制备了良好的SIC纳米线(NWS),然后由Co 3 O 4的薄层和层次CO 3 O 4 nano-nano-luper-Clusters组成,分别是在侧面和最高的sic nw上制造的。SIC NWS上Co 3 O 4的沉积使电极/水溶液界面的电荷转移由于其在CO 3 O 4装饰后极为亲水的表面特性而在电极/水性电解质界面上受益。此外,CO 3 O 4 /SIC NTA电极由于其稳固的结构而沿SIC纳米线的长度提供了方向的电荷传输路线。通过使用CO 3 O 4 /SIC NTA电极进行微轴心电容器的应用,以10 mV s-1扫描速率以10 mV s-1扫描速率以循环伏安法测量获得的面积电容达到845 mf cm-2。最后,还通过循环伏安法的循环测试评估了电容耐用性,以高扫描速率为150 mV s -1,对于2000个循环,表现出极好的稳定性。
催化烯烃的功能化是从容易获得的化学原料中建立分子复杂性的一种有效和经济的方法。1过渡金属催化的烯烃水力酰化/烯基反应,尤其是一种直接构建C(SP 3) - C(SP 2)键的简单手段。已经开发了各种策略,以使用共轭和非偶联的烷烃来控制授权的倾向,后者引入了烷基金属链行走的并发症。2 - 7种具有非偶联烷烃的抗马科夫尼科夫水碳化方法在过去几年中迅速发展。8 - 12中,在这些系统中,选择性控制通常源于热力学的偏好,以形成主要的烷基金属中间体。Markovnikov-选择性氢碳化反应与非偶联的烷烃相对较少,并且该区域的研究进展较慢(方案1A)。13的明显进步,他开发了双催化二线金属 - 氢化物H原子转移(MHAT)方法,该方法对芳基烷基与芳基烷基的近端烷基化具有有效的作用,而芳基卤代的芳基烷烯化是由芳香均通过良好的态度来控制的。13 C
图。2。示意图说明了对带电缺陷的DFT超级电池计算的远程筛选能量的评估。(a)带电荷Q的批量缺陷具有介电筛选,该筛选有限地扩展,刻有正方形,表明计算超级电池的范围。(b)DFT Supercell在超级电池并行教的全净电荷Q中汇总,通过从超级电池边缘绘制电子来筛选近场的区域,从而降低边缘区域。(c)等效体积球,半径为R Vol,需要评估远程筛选能量。(d)R皮肤减少了此半径以解释未经筛选的细胞体积,从而导致R JOST定义的JOST经典介电筛选。