通过逐步改进,货运物流公司不仅可以加速脱碳工作,而且可以将自己定位为长期成功的竞争和气候意识的市场。货运物流领域的早期技术采用者很可能会实现减少温室气体排放和竞争优势,以吸引旨在减少范围3排放的客户。其他重大的好处将来自提高运营效率,允许较低的成本结构和更好的资本部署可能性。AI的采用有望成为行业前往零净未来的旅程的变革转变。
1莱布尼兹农业工程与生物经济研究所(ATB),Max-eyth-Allee 100,14469 Potsdam,德国2废物管理与循环经济研究所,环境科学学院,TechniSchethecteriTätector,Dresten,Pratzschschschschwitzh的159.17991.07991.07991.07991,, 环境工程与建筑(DICAAR),Cagliari大学,Marengo,Marengo,09123 Cagliari,意大利; gcappai@unica.it 4意大利国家研究委员会 - 环境地质与地球工程(CNR-IGAG),通过Marengo 2,09123 Cagliari,意大利5号Red River Research Station,Louisiana State University University University University University Cermutultural Centornal Center,Bossier shoutjx@gmail.com(J.-W.C.); cjeong@agcenter.lsu.edu(c.j.) 6苏黎世应用科学大学(Zhaw)的自然资源科学研究所,瑞士CH-8820Wädenswil; beatrice.kulli@zhaw.CH 7,特伦托大学民用,环境和机械工程系,通过Mesiano 77,38123意大利特伦托; filippo.marchelli@unitn.it 8 USDA-ARS沿海平原土壤,水与植物研究中心,美国佛罗伦萨西部卢卡斯街2611号,美国南卡罗来纳州29501,美国; kyoung.ro@usda.gov 9 Departamento defísicaaplicada,Escuela de Ingenierí,avd extremadura大学。 de elvas s/n,06006 Badajoz,西班牙 *通信:hdang@atb-potsdam.de(C.H.D. ); sroman@unex.es(s.r。)环境工程与建筑(DICAAR),Cagliari大学,Marengo,Marengo,09123 Cagliari,意大利; gcappai@unica.it 4意大利国家研究委员会 - 环境地质与地球工程(CNR-IGAG),通过Marengo 2,09123 Cagliari,意大利5号Red River Research Station,Louisiana State University University University University University Cermutultural Centornal Center,Bossier shoutjx@gmail.com(J.-W.C.); cjeong@agcenter.lsu.edu(c.j.)6苏黎世应用科学大学(Zhaw)的自然资源科学研究所,瑞士CH-8820Wädenswil; beatrice.kulli@zhaw.CH 7,特伦托大学民用,环境和机械工程系,通过Mesiano 77,38123意大利特伦托; filippo.marchelli@unitn.it 8 USDA-ARS沿海平原土壤,水与植物研究中心,美国佛罗伦萨西部卢卡斯街2611号,美国南卡罗来纳州29501,美国; kyoung.ro@usda.gov 9 Departamento defísicaaplicada,Escuela de Ingenierí,avd extremadura大学。 de elvas s/n,06006 Badajoz,西班牙 *通信:hdang@atb-potsdam.de(C.H.D. ); sroman@unex.es(s.r。)6苏黎世应用科学大学(Zhaw)的自然资源科学研究所,瑞士CH-8820Wädenswil; beatrice.kulli@zhaw.CH 7,特伦托大学民用,环境和机械工程系,通过Mesiano 77,38123意大利特伦托; filippo.marchelli@unitn.it 8 USDA-ARS沿海平原土壤,水与植物研究中心,美国佛罗伦萨西部卢卡斯街2611号,美国南卡罗来纳州29501,美国; kyoung.ro@usda.gov 9 Departamento defísicaaplicada,Escuela de Ingenierí,avd extremadura大学。de elvas s/n,06006 Badajoz,西班牙 *通信:hdang@atb-potsdam.de(C.H.D.); sroman@unex.es(s.r。)
抽象心力衰竭(HF)和慢性肾脏疾病(CKD)是两种病理状况,普通人群患病率很高。当他们在同一患者中共存时,观察到他们之间的严格相互作用,以便受影响的患者需要临床多学科和个性化管理。HF和CKD的诊断依赖于患者的体征和症状,但是需要几种其他工具,例如基于血液的生物标志物和成像技术,以阐明和区分这些疾病的主要特征。由于HF中新推荐的药物而导致的生存率提高了,越来越挑战医生管理多种疾病的患者,尤其是在CKD的情况下。但是,这些药物在HF和CKD患者中的安全给药通常具有挑战性。知道每种药物可以使用哪种肌酐或肾脏清除值是基本的。在这篇评论中,我们试图对这个相当复杂的主题进行深入了解,以便获得更清晰的想法,并更加精确地参考HF和CKD的诊断评估和治疗管理。
©版权所有2024国王阿卜杜拉石油研究中心(“ Kapsarc”)。本文档(以及其中包含在其中的任何信息,数据或材料)(“文档”)不得在没有适当归属Kapsarc的情况下使用。未经Kapsarc的书面许可,不得全部或部分复制该文件。kapsarc不做任何明示或暗示的保修,代表性或承诺,也不承担任何法律责任,无论是直接或间接或对文档中包含的任何信息的准确性,完整性或有用性的责任。该文件中没有任何构成或应暗示构成建议,建议或选择。本出版物中表达的观点和观点是作者的观点,不一定反映了Kapsarc的官方观点或立场。
摘要:欧盟的目的是在2050年达到温室气体(GHG)的排放中立性。奥地利目前的温室气体排放量为8000万吨/年。可再生能源(REN)对奥地利的总能源消耗贡献了32%。要脱碳能量消耗,需要从可再生能源产生能源的大幅增加。这种增加将增加能源供应的季节性,并扩大能源需求的季节性。在本文中,分析了奥地利的净零情景中能源供求的季节性和对氢存储的要求。我们研究了氢在奥地利的潜在用法以及氢生成,技术和市场发展的经济学,以评估氢的水平成本(LCOH)。然后,我们涵盖了奥地利的能源消耗,其次是REN潜力。结果表明,在奥地利,水力发电,光伏(PV)和风的增量势最高为140 TWH。夏季的水力发电生成和PV高于冬季,而风能在冬季导致高能产生。最大的增量电位是PV,与仅PV使用相比,Agrivoltaic系统显着增加了PV的面积。电池电动汽车(BEV)和燃料电池车辆(FCV)比内燃机(ICE)汽车更有效地使用能量;但是,由于电力 - 氢 - 电转换率,使用氢用于发电显着降低了效率。ED所需的氢存储将为10.82亿M 3,13.34亿M 3REN使用的增加和冬季对奥地利的能源需求的提高需要季节性的能源存储。我们为奥地利开发了三种场景:外部依赖的情景(EDS),平衡的能量场景(BES)或自我维持的情景(SSS)。EDS场景假定向奥地利进口重大进口,而SSS情景依赖于奥地利内部的Ren Generation。
这项工作是由国家可再生能源实验室撰写的,该实验室由美国能源部国家能源部(DOE)国家可再生能源实验室(DOE)根据合同号DE-AC36-08GO28308。由美国能源部能源效率和可再生能源建设技术办公室提供的资金。本文所表达的观点并不一定代表美国能源部或美国政府的观点。美国政府保留和出版商,通过接受该文章的出版物,承认美国政府保留了不可限制的,有偿的,不可撤销的,全球范围内的许可,以出版或复制这项工作的已发表形式,或允许其他人这样做,以实现美国政府的目的。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
神经医学和肌肉障碍系,医学中心 - 弗雷堡大学,弗雷堡大学,弗雷堡,德国B神经肌肉中心,儿科和青少年医学系,维也纳,维也纳,奥地利C clinic favoriten
频率选择表面 (FSS) 由周期性排列的一维或二维金属结构组成,由于其频率谐振特性而备受关注。FSS 可以根据其尺寸、形状、厚度和其他参数在特定频率范围内选择性地反射 (带阻) 或透射 (带通) 入射电磁波,这是 FSS 的识别特征。[1] 金属和介电材料结构被广泛用于设计太赫兹 FSS 或滤波器,因为它们具有高机械强度,有助于产生功能化设计。金属 FSS 可以通过反射或吸收电磁干扰来屏蔽,但是,制造所需结构的成本很高,并且正在被碳基材料取代,以获得高频电磁特性,具有合适的成本、重量轻、无腐蚀等特点。[2] 通常,碳基材料以 sp、sp 2 和 sp 3 键合,形成相互连接的碳-碳键的长链,从而产生不同的物理和电性能。 [3] 因此,这类材料可归类为半金属或非电介质材料(如石墨烯、石墨、碳纳米管、碳纳米纤维)[4,5],因此通过在磁场和电场中应用飞秒激光脉冲产生 THz 脉冲,其纳米复合材料可表现出 THz 光跃迁、光电特性和介电特性。[6–11] 由于存在非局域 π 键电子,这些碳基材料表现出优异的 EMI 屏蔽性能。自由移动的电子与电磁波相互作用,导致反射,在共振频率下具有最大回波损耗值。[12] 过多的电磁能量会损坏周围的电路并引起不必要的噪声脉冲。Liang 等人。报道了竹状短碳纤维@Fe3O4@酚醛树脂和蜂窝状短碳纤维@Fe3O4@FeO复合材料作为高性能电磁波吸收材料,在4-18 GHz范围内成功实现了反射损耗-10 dB。[13]然而,在文献中对碳基材料在THz范围内的表征仍然没有很好的解释,关于碳基材料FSS特性的报道很少。最近,一种利用3D打印制造的碳基FSS吸收器
可变可再生能源(VRE)有望成为实现范围内经济气候变化目标的基石。但是,尽管运输电气化正在推动公路车辆的发展,但对于长途航空航空仍然具有挑战性。在这个难以蓄积的部门中,政策和研究重点是生产与现有飞机技术兼容的液化燃料。尽管目前,替代喷气燃料市场以生物燃料为主,但多样化的燃料生产途径对于弹性的未来至关重要。新兴的基于电力的合成喷气燃料为商业化提供了有希望的新路线。尽管通过电解可持续航空燃料(E-SAF)和常规化石喷气燃料之间的成本比率提出了采用障碍,但涉及综合动力系统观点的技术经济评估表明,潜在的协同效应既可以降低E-SAF的生产成本,又可以使电力领域的能源部门朝着基于恢复电源的动力生成系统。大型VRE容量需要灵活的需求管理,而E-Fuel Electreolizer等可中断的技术可能在网格平衡和成本