放牧对草原的植物多样性和生产力产生了深远的影响,同时对调节草原土壤碳固醇产生了重大影响。此外,除了改变植物群落的分类多样性外,放牧还会影响其功能性状的多样性。但是,我们仍然不太了解放牧如何改变草地生态系统中植物功能多样性(FD)和土壤碳固存之间的关系。在这里,我们进行了放牧的操纵实验,以研究不同放牧方案(无放牧,绵羊放牧(SG)和牛放牧(CG))对植物FD与草皮和沙漠草原中土壤碳序列之间关系的影响。我们的发现表明,不同的牲畜物种改变了草地草原中植物FD与土壤有机碳(SOC)之间的关系。sg脱钩了FD与SOC之间最初的积极关系,而CG将关系从正面变为负面。在沙漠草原中,SG和CG都加强了FD与SOC之间的积极关系。我们的研究阐明了牲畜物种对土壤碳固存的复杂机制的相当大影响,这主要是通过调节各种功能性状多样性措施来介导的。在未遗传的草地和放牧的沙漠中,维持高植物FD有利于土壤碳固存,而在放牧的草地和未赖因的沙漠中,这种关系可能会消失甚至逆转。通过测量性状并控制放牧活动,我们可以准确预测草地生态系统中的碳固存潜力。
1海洋环境科学的国家主要实验室,沿海和湿地生态系统的主要实验室(教育部),沿海和海洋管理研究所,环境与生态学院,Xiamen University,Xiamen University,Xiamen,Fujian,中国,2个国家观察和研究站中国藤本富州气象学科学,南中国海遥感,测量和地图合作应用技术创新中心,南中国海开发研究所,自然资源部,广东,广东,中国广东,中国广东,中国,尤里奇,尤里斯大学的大气层学院中国广东的朱海,南方海洋科学与工程实验室(Zhuhai),珠海,中国广东,8号生态学学院,太阳森大学,孙森大学,深圳,广东,中国,中国,9 nanjing
1 Angie Research,1 Pl。Samule The Champlain,Pais Porce,双鱼座,92930 PARAS,法国2部门或电动机,系统和金属工程,Turop Swindth 131,Switching Park。 34,53850 Lappeenran Ranta,芬兰4电气和计算机建筑,K.U.Seecte,Castle Park Arenberg,Tor Park 8310,Tor Park 8310,3600,3600,3600,比利时6大学,比利时6大学6 University 6 University 6 University 6 University 6 University 6 University 6 University,Belgium 6 University 6 University。已经是“蒙特雷”(UQAM),De´ party the Strat',您,Noccessabilite的社交环境,E´Coles Sciences(ESG),Opian Economic Labory Labory Labory,University'Place palary,Place,Place,Place D Marre´t Marre´t Marre´the后者The后者,75016 Paris,French 8 castainalibal and Infrastraster and Canver Team,33美国9部门或核科学,以及工程学,弥撒和工程,马萨诸塞州或技术(麻省理工学院),美国马萨诸塞州剑桥市10隆德大学可持续性研究中心(卢斯科斯),瑞典隆德大学11 Hyrogen Laboratory 11 Hyrogen实验室或AV。Moniiz地区〜A,207,里约热内卢21941-594,巴西12 Engie Impact,Simon Bolivaan 34 1000出发,大学或Tex。停止C2200,TX 78712-1591,美国,美国14 KU LEUVEN,ECOM,BEL GEL,BELG,BEL GELIM,BEL GELIM,BELIM,或经济,或经济学,或经济学,或经济学,或经济学,或经济,纽约市,或经济比利时比利时鲁道鲁文卢文,比利时卢文 *corpoundce:markety@yhoo.nh https://doi.org/10,1016/j.isci.sci。 2024.1111111111111111111111111111111111111111111111111111111111111111111111ME
抽象的土壤肥力和生产力受到剥削和退化过程的严重影响。这些威胁,再加上人口增长和气候变化,迫使我们寻找创新的农业生态解决方案。益生元是一种土壤生物刺激剂,用于增强土壤条件和植物生长,并可能在碳(C)固存中起作用。与未经处理的土壤或对照(SP)相比,评估了两种商业益生元(分别称为SPK和SPN)(分别称为SPK和SPN)对用Zea Mays L.栽培的农业土壤的影响进行了评估。在两个收获日期进行分析:应用益生元后三周(D1)和十个星期(D2)。测量了植物生长参数和土壤特征,侧重于土壤有机物,土壤细菌和真菌群落,并植物根菌根。关于物理化学参数,两种益生元治疗都会增加土壤电导率,阳离子交换能力和可溶性磷(P),同时降低了硝酸盐。同时,在D2处,SPN处理在升高特定的阳离子矿物质(例如钙(CA)和硼(B))方面是不同的。在微生物水平上,每种益生元都诱导了本地细菌和真菌群落的丰度和多样性的独特转移,这在D2处很明显。这些生物标志物被鉴定为(a)腐生型,(b)植物生长促进性细菌和真菌,(c)内植物细菌以及(d)内生和共生微生物群。该结果反映在处理过的土壤中,尤其是SPN中的肾小球素含量和霉菌化率的增加。同时通过每种益生元治疗招募了特定的微生物分类群,例如来自Spk的Spk的真菌,以及来自Spk的真菌以及Chitinophaga,Neo-os-secet and Bacillie and bacormob and bacorli secors and carlobacter,sphingobium and Massilia,以及来自Spk的真菌和schizothecium carpinicola来自SPN的真菌的细节。我们观察到这些作用导致植物生物量的增加(SPK和SPN的芽分别为19%和22.8%,根分别增加了47.8%和35.7%的干重),并促进了土壤C含量的增加(有机C含量增加了8.4%,总C增加了8.9%),尤其是SPN治疗。鉴于这些发现,施用后十周的使用益生元不仅通过改善土壤特征并塑造其天然微生物群落来增加植物的生长,而且还表明了增强C隔离的潜力。鉴于这些发现,施用后十周的使用益生元不仅通过改善土壤特征并塑造其天然微生物群落来增加植物的生长,而且还表明了增强C隔离的潜力。
涡度相关法直接测定的是净生态系统碳交换(Net Ecosystem Exchange, NEE)。监测样地的碳汇 为一定时期净生态系统碳交换(NEE)累加值的负值,即净生态系统生产力(NEP)。当NEP为正值时, 表示监测区域为碳汇;当NEP为负值时,表示监测区域为碳源。
我们通过对土壤进行彻底的原位和实验室测试,采取了全面的方法。这种双重方法旨在为我们提供对土壤组成的更细微的理解,使我们能够制定精确的策略,以进一步治疗和增强土壤生育能力。原位测试涉及现场评估,使我们能够观察其自然环境中的土壤特征。同时,实验室测试为详细分析提供了受控的设置,从而促进了对土壤特性和养分水平的更深入研究。这种综合努力确保了整体评估,从而引导我们采取明智的决定,以通过有针对性的治疗和改进来优化土壤生育能力。
结果:结果表明,不同植物物种和类型的碳固相能力表现出显着差异,p值小于0.05。就单位冠层投影面积的每日碳固隔而言,排名如下:常绿树>常绿灌木>落叶树>落叶灌木。对于总植物碳固存,排名是:常绿树>落叶树>常绿灌木>落叶灌木。常绿树在两个碳固存指标中表现出色,每日平均每单位碳固醇固定面积投影面积,整个植物分别为18.0024 g/(m 2·d)和462.28 g/d。该研究还观察到季节性变化,与春季和冬季相比,秋季和夏季的碳固剩速度更高。在夏季,每单位冠层投影面积的平均每日碳螯合物和整个工厂分别为11.975 g/(m 2·D)和161.744 g/d,而在秋季,这些值为13.886 g/(m 2·D)和98.458 g/d。季节性变化,与春季和冬季相比,秋季和夏季的碳固次率更高。此外,在四个居民区进行了CO 2浓度,从而提供了对碳固存的空间和时间动力学的见解。
结果:结果表明,不同植物物种和类型的碳固相能力表现出显着差异,p值小于0.05。就单位冠层投影面积的每日碳固隔而言,排名如下:常绿树>常绿灌木>落叶树>落叶灌木。对于总植物碳固存,排名是:常绿树>落叶树>常绿灌木>落叶灌木。常绿树在两个碳固存指标中表现出色,每日平均每单位碳固醇固定面积投影面积,整个植物分别为18.0024 g/(m 2·d)和462.28 g/d。该研究还观察到季节性变化,与春季和冬季相比,秋季和夏季的碳固剩速度更高。在夏季,每单位冠层投影面积的平均每日碳螯合物和整个工厂分别为11.975 g/(m 2·D)和161.744 g/d,而在秋季,这些值为13.886 g/(m 2·D)和98.458 g/d。季节性变化,与春季和冬季相比,秋季和夏季的碳固次率更高。此外,在四个居民区进行了CO 2浓度,从而提供了对碳固存的空间和时间动力学的见解。
[4] Gibson B, Wilson DJ, Feil E 等人。野生环境中细菌倍增时间的分布。Proc Biol Sci, 2018, 285: 20180789 [5] Yu J, Liberton M, Cliften PF 等人。Synechococcus elongatus UTEX 2973,一种利用光和二氧化碳进行生物合成的快速生长蓝藻底盘。Sci Rep, 2015, 5: 8132 [6] Paddon CJ, Westfall PJ, Pitera DJ 等人。强效抗疟药青蒿素的高水平半合成生产。Nature, 2013, 496: 528-32 [7] Lin MT, Occhialini A, Andralojc PJ 等人。一种更快的 Rubisco,具有提高作物光合作用的潜力。 Nature, 2014, 513: 547-50 [8] Bailey-Serres J, Parker JE, Ainsworth EA 等. 提高作物产量的遗传策略。Nature, 2019, 575: 109-18 [9] Gleizer S, Ben-Nissan R, Bar-On YM 等. 转化大肠杆菌从二氧化碳生成所有生物质碳。Cell, 2019, 179: 1255-63 [10] Chen FYH, Jung HW, Tsuei CY 等. 将大肠杆菌转化为仅靠甲醇生长的合成甲基营养菌。Cell, 2020, 182: 933-46 [11] Kaneko T, Sato S, Kotani H 等.单细胞蓝藻Synechocystis sp. 菌株 PCC6803 的基因组序列分析。II. 整个基因组的序列测定和潜在蛋白质编码区的分配。DNA Res,1996,3:109 [12] van Alphen P、Najafabadi HA、dos Santos FB 等人。通过确定其培养的局限性来提高 Synechocystis sp. PCC 6803 的光自养生长率。Biotechnol J,2018,13:e1700764 [13] Sheng J、Kim HW、Badalamenti JP 等人。温度变化对台式光生物反应器中 Synechocystis sp PCC6803 的生长率和脂质特性的影响。 Bioresour Technol, 2011, 102: 11218-25 [14] 张胜山, 郑胜南, 孙建华, 等. 通过便捷引入 AtpA-C252F 突变快速提高蓝藻细胞工厂的高光和高温耐受性。Front Microbiol, 2021, 12: 647164 [15] Ungerer J, Lin PC, Chen HY, 等. 调整光系统化学计量和电子转移蛋白是蓝藻 Synechococcus elongatus UTEX 2973 快速生长的关键。Mbio, 2018, 9: e02327-17 [16] Wlodarczyk A, Selao TT, Norling B, 等. 新发现的 Synechococcus sp. PCC 11901 是一种可高产生物量的强健蓝藻菌株。Commun Biol, 2020, 3: 215 [17] Jaiswal D, Sengupta A, Sohoni S 等人。从印度分离的一种强健、快速生长且可自然转化的蓝藻 Synechococcus elongatus PCC 11801 的基因组特征和生化特性。Sci Rep, 2018, 8: 16632 [18] Jaiswal D, Sengupta A, Sengupta S 等人。一种新型蓝藻 Synechococcus elongatus PCC 11802 与其邻居 PCC 11801 相比具有不同的基因组和代谢组学特征。Sci Rep, 2020, 10: