术语“内生植物”首先是由亨利·安东·德·巴里(Henry Anton de Bary)于1866年使用的,其中内生菌被定义为生活在植物组织中的任何微生物,即真菌,细菌。在1986年,卡洛尔将内生生物描述为生活在植物组织中并引起各种感染的真菌。在1991年,培养皿将内生植物定义为可生活在植物组织中的真菌,细菌,放线菌和支原体。他将其定义为任何不损害宿主植物并显示内生菌与植物的共生关系的微生物。他提到有时内生菌可能是伤害植物的弱病原体。但是,已经证实大多数内生菌都不是致病性的。内生微生物是植物的隐藏伴侣,在植物内过着互惠互利的生活。尽管这些内生菌被认为已经发展并与土地植物相关,但内生仅在上个世纪被认可。由于有可能获得新的重要化合物及其在提高生产率中的作用,因此内生菌的有益作用变得重要,因为它们产生了各种化合物并与其他致病性和非致病性微生物相互作用。做。随着现代工具和分子生物学方法的发展,有可能确定这些微生物的正确识别,并知道它们与宿主和其他微生物的相互作用。
下面的图2列出了直布罗陀的实际和预计的铜生产,从2005年到2044年。在重新启动后的最初几年中,产量稳步增加。从2005年到2011年,每年的铜产量从5480万磅增加到8290万磅。这一增长时期之后是2012年至2017年之间的强劲生产时期。在此期间,矿山的生产每年始终超过1.25亿磅的铜,2015年达到1.432亿磅。从那以后,生产有所变化。这种可变性反映了运营调整,共同19-19大流行的影响以及铜价波动的结合。期待,预计铜生产相对稳定,我的平均产量为1.29亿磅的铜。
钙钛矿是指一种晶体结构,并扩展到所有具有相同结构的材料,尽管它可能表现出非常不同的性质和性能。最初,钙钛矿仅表示具有 ABO 3 化学计量学晶体学家族的金属氧化物矿物。钙钛矿的起源可以追溯到 1839 年德国矿物学家古斯塔夫·罗斯在乌拉尔山脉发现富含绿泥石的矽卡岩。在这种矿物中发现了 CaTiO 3 成分,并以著名的俄罗斯地质学会主席列夫·A·佩罗夫斯基伯爵 (1792–1856) 的名字命名。此后,许多具有钙钛矿结构的金属氧化物,如 BaTiO 3 、PbTiO 3 和 SrTiO 3 ,得到了广泛的研究。许多氧化物钙钛矿被发现表现出铁电或压电特性 [1–3]。氧化物钙钛矿发现50多年后,Wells合成了一系列通式为CsPbX 3 (X=Cl, Br, I)的铅卤化物[4]。这些金属卤化物后来被证明具有钙钛矿结构ABX 3 ,其在高温下为立方结构,在低温下由四方畸变结构转变而来。CsPbX 3 的可调光电导性引起了电子性质研究的广泛关注,也催生了有机分子加成的思路[5, 6]。Weber发现有机阳离子甲铵 (CH 3 NH 3 + ) 取代Cs +形成CH 3 NH 3 MX 3 (M=Pb, Sn, X=I, Br),发表了第一份有机铅卤化物钙钛矿的晶体学研究[7, 8]。 20 世纪末,Mitzi 等人合成了大量有机-无机卤化物钙钛矿。[9–11]。有机分子(例如小分子和大分子有机阳离子)为卤化物钙钛矿注入了新的活力,使其在光电、光伏、铁磁和反铁磁以及非线性光学领域具有更多样化的结构和物理特性。除了灵活的组件和多功能功能外,低形成能使卤化物钙钛矿易于
对于某些地点,矿物质碳酸化的被动速率约占矿山总气体排放量的10%,并带有常规采矿工艺。对于这些地点,对矿山尾矿的优化可以提高碳矿化速率,以抵消很难减少温室气体排放,这些温室气体排放在部署可再生电力发电和脱碳以抵消动力的情况下保留,从而提供了碳中和中性矿物的途径。要以对全球温室气体排放有意义的规模实现碳固换,必须增加超镁铁质矿物质的反应性。提高碳矿化能力和速率的一种途径是激活超镁脉管矿物质。这还扩大了矿物质碳酸化的应用到具有不同甘型矿物质含量的更多矿场,以进一步增加矿物质碳的全球影响。
微生物坏死是土壤有机物的重要组成部分,但是它的持久性和对土壤碳固醇的贡献的量很差。在这里,我们投资了死灵剂与土壤矿物质的相互作用,并将其持久性与西北英国低层和高管理强度下的草地土壤中的植物垃圾相提并论。在1年的基于实验室的孵化中,我们发现植物叶窝的碳矿化速率高于根垃圾和坏死剂,但发现1年后碳持久性没有显着差异。在一个领域的实验中,大约三分之二的同位素标记的坏死量在3天内与矿物质相关。矿物质相关的碳的下降速度比氮的速度迅速,在8个月内,两者在增加的管理强度下的持久性持续增强。我们建议,碳矿化率与碳持久性解耦,而死灵量碳的持续性较小,而碳则不如核肿瘤氮,而农业管理强度会影响草原的农业隔离。
nöthnitzerstr。61,01187德累斯顿,德国2。莱布尼兹 - 固态和材料研究所研究德累斯顿,赫尔姆霍尔茨斯特拉斯20,
广泛部署光伏电池的一个有希望的途径是利用廉价、高效的串联电池。我们以最先进的商用硅电池为基准,对钙钛矿-硅和钙钛矿-钙钛矿串联电池的能量回收期、碳足迹和环境影响评分进行了整体生命周期评估。考虑了串联电池制造和操作过程中处理步骤和材料的可扩展性。全钙钛矿串联配置的能量回收期和温室气体排放因子分别为 0.35 年和 10.7 g CO 2 -eq/kWh,而硅基准分别为 1.52 年和 24.6 g CO 2 -eq/kWh。延长使用寿命为减少碳足迹提供了强大的技术杠杆,使得钙钛矿-硅串联电池可以在能源和环境性能方面超越目前的基准。具有灵活和轻质外形的钙钛矿-钙钛矿串联材料进一步提高了约 6% 的能源和环境性能,从而增强了大规模、可持续部署的潜力。