这是经合组织核能机构 (NEA) 编辑的“化学热力学” (TDB) 系列第 13 卷第 2 部分,是描述铁物种化学热力学数据选择的两卷中的第二卷。正如 2008 年所确认的那样,由于文献中的信息量巨大,因此决定将评论分为两部分进行编写会更有效率。第 1 部分包含对金属、简单离子、水性羟基、氯化物、硫化物、硫酸盐和碳酸盐复合物以及固体氧化物和氢氧化物、卤化物、硫酸盐、碳酸盐和简单硅酸盐的数据评估——这些数据被认为是放射性废物管理计算的关键。评论的第二部分提供了对硫化物固体、硝酸盐、磷酸盐和砷酸盐的固体和溶液物种的数据评估,以及 TDB-Iron 第 1 部分中未考虑的一些水性物种的数据评估,以及氧化铁和硫化铁系统中固体溶液形成的某些方面。即使是现在,由于资源和时间的限制,许多复杂的固体系统如钛酸铁、铝酸盐和更复杂的系统也无法评估。
电解质是锂电池的重要组成部分,对电池的容量,循环和存储性能有重大影响。12 - 14商业化的电体主要由锂盐和有机碳酸盐溶液组成。但是,这些商业化有机电解质的有限电化学窗口使它们在充电和放电期间不稳定。15此外,这些有机溶剂对于锂金属阴极是不稳定的,它可以轻松形成由电解质分解产生的不稳定的SEI(固体电解质相)层,从而导致较大的互相损害和树突。16 - 18除了商业碳酸盐电解质外,醚电解质在低温下具有良好的锂金属兼容性和电导率,但是氧化稳定性较差(<4 V vs. li/li +)限制了它们在高伏特系统中的使用。此外,磺基酰胺,磺酰胺和磷酸电解质与金属和石墨阳极的兼容性较差。进一步,这些有机电力是挥发性且可燃的,这使得蝙蝠锂成为已知的安全危害。21因此,高度希望开发具有低界面阻抗,高离子电导率和绿色电解质以提高性能的锂电池。22
摘要。Fitri L,Aulia TB,Fauzi A,Kamil GA。 2023。在印度尼西亚班达·亚齐(Banda Aceh)的垃圾填埋场中表征和筛选尿液酶活性。生物多样性24:910-915。尿素细菌能够产生碳酸钙沉淀酶尿素酶。尿液细菌将脲酶降解为氨和二氧化碳。尿液细菌可以应用于生物饲养技术和混凝土混合物中。这项研究旨在隔离和表征尿液分离株,然后确定来自印度尼西亚班达·亚西(Banda Aceh)的甘旺贾瓦(Gampong Jawa)的垃圾填埋土壤中尿液分离株的碳酸钙沉淀潜力。这项研究成功地从Gampong Jawa垃圾填埋场中成功地分离了24个细菌分离株,并且确认了其中十种这些分离株可以积极产生尿素酶。用代码BTPA-3,BTPA-6,BTPA-7,BTPA-8,BTPA-8,BTPA-9,BTPA-9,BTPA-15,BTPA-15,BTPA-20,BTPA-20,BTPA-22,BTPA-22,BTPA-23和BTPA-24隔离 。分别为1.32、1.54和1.70 g。 BTPA-3,BTPA-6,BTPA-7,BTPA-8,BTPA-9,BTPA-9,BTPA-23和BTPA-24被确定为芽孢杆菌属的成员; BTPA-20是葡萄球菌属的成员。 BTPA-15和BTPA-22是Solibacillus属的成员。 该研究数据是有关甘蓬爪哇垃圾填埋场细菌潜力的新信息,该信息可以确定碳酸盐沉淀。 该研究还表明,可以进一步改善并利用在混凝土混合物中进行的尿液分离株。。分别为1.32、1.54和1.70 g。 BTPA-3,BTPA-6,BTPA-7,BTPA-8,BTPA-9,BTPA-9,BTPA-23和BTPA-24被确定为芽孢杆菌属的成员; BTPA-20是葡萄球菌属的成员。 BTPA-15和BTPA-22是Solibacillus属的成员。 该研究数据是有关甘蓬爪哇垃圾填埋场细菌潜力的新信息,该信息可以确定碳酸盐沉淀。 该研究还表明,可以进一步改善并利用在混凝土混合物中进行的尿液分离株。。分别为1.32、1.54和1.70 g。 BTPA-3,BTPA-6,BTPA-7,BTPA-8,BTPA-9,BTPA-9,BTPA-23和BTPA-24被确定为芽孢杆菌属的成员; BTPA-20是葡萄球菌属的成员。 BTPA-15和BTPA-22是Solibacillus属的成员。 该研究数据是有关甘蓬爪哇垃圾填埋场细菌潜力的新信息,该信息可以确定碳酸盐沉淀。 该研究还表明,可以进一步改善并利用在混凝土混合物中进行的尿液分离株。。分别为1.32、1.54和1.70 g。 BTPA-3,BTPA-6,BTPA-7,BTPA-8,BTPA-9,BTPA-9,BTPA-23和BTPA-24被确定为芽孢杆菌属的成员; BTPA-20是葡萄球菌属的成员。 BTPA-15和BTPA-22是Solibacillus属的成员。 该研究数据是有关甘蓬爪哇垃圾填埋场细菌潜力的新信息,该信息可以确定碳酸盐沉淀。 该研究还表明,可以进一步改善并利用在混凝土混合物中进行的尿液分离株。。分别为1.32、1.54和1.70 g。BTPA-3,BTPA-6,BTPA-7,BTPA-8,BTPA-9,BTPA-9,BTPA-23和BTPA-24被确定为芽孢杆菌属的成员; BTPA-20是葡萄球菌属的成员。 BTPA-15和BTPA-22是Solibacillus属的成员。该研究数据是有关甘蓬爪哇垃圾填埋场细菌潜力的新信息,该信息可以确定碳酸盐沉淀。该研究还表明,可以进一步改善并利用在混凝土混合物中进行的尿液分离株。
• 几种替代的钠兼容热存储选项正在开发/商业化 • 固体材料中的显热能存储,例如石墨(Graphite Energy) • 相变材料中的潜在能量存储,例如碳酸盐和氯化物盐(UniSA),Al和Al-Si(Azelio) • 组合显热/潜在能量存储,即嵌入固体基质材料中的PCM,例如石墨中的Al(MGA Thermal)
标题:简化和扩大使用机械化学作者合成的硼咪二唑酯框架(BIF)范围TomislavFriščićA,B * A McGill University的化学系,801 Sherbrooke St. W. H3A 0B8加拿大蒙特利尔。e-邮件:tomislav.friscic@mcgill.ca b frqnt Quebec高级材料中心(QCAM/CQMF),加拿大蒙特利尔,加拿大C CADADIFF大学,加拿大大学,公园大楼,加迪夫CF10 3AT公园广场,英国d,英国d,d pasciff cf10 3at,d pastef,d cf10 d。e Concordia大学生物化学与化学系,7141 Sherbrooke St. W. H4B 1R6加拿大蒙特利尔。 f国际纳米技术研究所,化学系西北大学,2145 Sheridan Road,60208 Sheridan Road,60208 Evanston,伊利诺伊州,伊利诺伊州,伊利诺伊州伊利诺伊州,主要文本机械化学1-7,已成为一种多功能方法,用于合成和高级材料的合成和材料,包括Nananoparticle Systems 8-10和金属eRebressing(包括金属型号)(包括金属型号)(Mofs-Er-Organigics)(Mofs-Erganigy),使用常规的基于解决方案的技术获得。 16–18的机械化学技术,例如球铣削,双螺钉挤出19和声学混合20,21,简化和先进了多种MOF范围的合成,允许使用简单的起始材料,例如金属氧化物,氢氧化物或碳酸盐或碳酸盐,氢氧化物或碳酸盐,在房间温度和较高的表面上,较高的表面上的较高的表面,均等的,均质的稳定性,均可稳定地及其稳定,并稳定地,稳定性,稳定性,稳定性,并稳定地及其稳定性,并在稳定的稳定性,并且稳定的范围是稳定的。同行。e Concordia大学生物化学与化学系,7141 Sherbrooke St. W. H4B 1R6加拿大蒙特利尔。f国际纳米技术研究所,化学系西北大学,2145 Sheridan Road,60208 Sheridan Road,60208 Evanston,伊利诺伊州,伊利诺伊州,伊利诺伊州伊利诺伊州,主要文本机械化学1-7,已成为一种多功能方法,用于合成和高级材料的合成和材料,包括Nananoparticle Systems 8-10和金属eRebressing(包括金属型号)(包括金属型号)(Mofs-Er-Organigics)(Mofs-Erganigy),使用常规的基于解决方案的技术获得。16–18的机械化学技术,例如球铣削,双螺钉挤出19和声学混合20,21,简化和先进了多种MOF范围的合成,允许使用简单的起始材料,例如金属氧化物,氢氧化物或碳酸盐或碳酸盐,氢氧化物或碳酸盐,在房间温度和较高的表面上,较高的表面上的较高的表面,均等的,均质的稳定性,均可稳定地及其稳定,并稳定地,稳定性,稳定性,稳定性,并稳定地及其稳定性,并在稳定的稳定性,并且稳定的范围是稳定的。同行。24,25机械化学在MOF合成和发现中的优势使我们解决了合成硼咪唑酸盐框架(BIF)的可能性,26一种是一种有趣但不足以开发的微孔材料,类似于Zeolitic imidazaly的框架(Zifs),27-29 – 27-29 – 29 – 29 – 29 – 29 – 29 – 29-硼(III)和单价Li +或Cu +阳离子作为节点。尽管BIFS提供了一个有吸引力的机会来访问分子量较低的微孔MOF,尤其是在基于Li+和B(III)中心的“超轻”系统的情况下,这种材料家族在很大程度上尚未探索 - 可能是由于需要在n -butylithium中使用溶液中的溶液环境,因此需要进行严格的综合条件。29现在,我们展示如何切换到机械化学环境使锂和铜(i)基于铜(i)的BIF迅速制备(即,一个小时或更短的时间),没有升高的温度或散装溶剂,以及易于获得的固体反应物,例如氢氧化物和氧化物。虽然机械化学准备的BIF表现出明显高的表面积面积,而机械化学则可以将这种类别的材料扩展到以前未报告的Ag +节点。与基于li +或Cu +的bifs同源性引入,但包括Ag +离子,可以对其稳定性进行定期密度功能功能理论(DFT)评估。这表明,随着四面体节点的稳定性(SODALITE拓扑结构(SOD)开放BIF相对于封闭式包装的Diaondoid(DIA)拓扑多形状,改善了较重的元素。
Omai 金矿区由中温脉金矿化和相关的腐泥土冲积砂矿组成,赋存于圭亚那地盾的古元古代花岗岩-绿岩地形中。总采矿储量估计为 4480 万吨,品位为 1.43 glt Au。该金矿区位于东南东向的区域规模结构上,称为 Issano-Appaparu 剪切带。在 Omai,金矿床位于两个独立的矿区 - Omai Stock 区和 Wenot Lake 区。大部分原生矿化集中在高 AI、石英闪长岩-长花岗岩凸起(Omai Stock)上,其中围岩蚀变以热液绢云母-碳酸盐组合为主。原生矿石包 Au-W-Te-S 矿化包含在一系列狭窄(1-5 厘米)的石英碳酸盐(铁白云石)脉中。可见金通常与方铅矿和微观碲化物有关。临时流体包裹体研究表明,母热液含 H 2 0-C0 2 (- 5.0 mol% CO 2 ),盐度低 (0-1.8 wt. % NaCI 当量),密度适中 (0.96 g/cm 3 )。流体的沉积温度可能在 200-400oC 左右。初步的 6'80 值与岩浆和/或变质源一致。
摘要。胞外聚合物 (EPS) 是许多远洋和底栖环境中重要的有机碳库。EPS 的产生与植物和微微浮游生物的生长密切相关。EPS 通过结合阳离子并充当矿物质的成核位点,在碳酸盐沉淀中起着关键作用。水柱中大规模细粒碳酸钙沉淀事件(白垩事件)与蓝藻水华有关,包括聚球藻属。引发这些沉淀事件的机制仍存在争议。我们认为,在指数和稳定生长阶段产生的蓝藻 EPS 在白垩的形成中起着关键作用。本研究的目的是研究在模拟水华的 2 个月蓝藻生长过程中 EPS 的产生情况。使用各种技术,如傅里叶变换红外 (FT-IR) 光谱以及比色法和十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳 (SDS-PAGE) 测定法,研究了聚球藻不同生长阶段 EPS 的产生和特性。我们通过体外强制沉淀实验进一步评估了 EPS 在碳酸盐沉淀中的潜在作用。在早期和晚期稳定期产生的 EPS 所含的负电荷基团比在指数期产生的 EPS 所含的负电荷基团要多。因此,稳定期 EPS 的 Ca 2 + 结合亲和力较高,导致形成大量较小的
摘要。细胞外聚合物物质(EPS)是许多上层和本元环境中重要的有机碳储层。EP的产生与植物和皮科普兰顿的生长密切相关。EPS通过阳离子的结合并用作最小值的成核位点在碳酸盐沉淀中起关键作用。水柱中碳酸钙沉淀的大规模发作(Whiting事件)已与蓝细菌开花有关,包括Synechococococococococococococococcus spp。触发这些降水事件的机制仍在争论中。我们提出的是,在指数和固定生长阶段产生的蓝细菌EPS在白色的形成中起着至关重要的作用。这项研究的目的是研究2个月蓝细菌生长的EPS产生,模仿开花。在Syechococcus spp的不同生长阶段检查了EP的产生和特征。使用各种技术,例如傅立叶变换红外(FT-IR)表格,以及比色和十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳(SDS-PAGE)测定法。我们通过体外降水实验进一步评估了EPS在碳酸盐预紧次的预言中的潜在作用。在早期和晚期阶段产生的EPS含有比指数阶段产生的EPS中的更大的负电荷组。con,固定相EPS的较高Ca 2 +结合的依次导致形成了较大量的较小