我们首次使用具有内置表面活性的胺作为碳含量捕获和原位转换为碳酸氢盐作为碳含量。表面活性胺为3-(二甲基氨基)丙胺(DMAPA),用氧化丙烷(PO)组(DMAPA-XPO,X = 4、6、8、12)修饰。对CO 2的分析捕获了13 C核磁共振(NMR)光谱的捕获能力数据,确定了碳酸氢盐浓度的TRACES和CO 2捕获过程中PO组影响的生成机制,建立了CO 2溶解度,溶液的pH和固定效应之间的关系。结果证明了具有最佳PO水平(DMAPA-6PO)内置表面活动的有效性。DMAPA-6PO在环境条件下,与DMAPA相比,碳酸氢盐生成54%。
在这项研究中,使用二维图像用于使用两步过程(8,14)来表征谷物和孔的形态。在第一步中,捕获图像。在第二步中,使用图像分析软件扫描了此类特征的面积和平均孔接触角,该软件能够准确测量孔隙和谷物空间的几个形态参数,如图1所示。本研究利用面积测量和接触角作为所有分析的标准参数。形态特征是根据面积和接触角度计算的,这将信息准确性的水平分为两个维度。该信息被认为是“大数据”,并分析了以找到可以减少成本和时间的答案。
她效应大学,她的官员,S1 3JD,英国B b曼彻斯特大学化学工程系,曼彻斯特大学,曼彻斯特大学,M13 9PL,英国C英国C型催化枢纽,Harwell,Harwell,Harwell,Harwell,Rutherford Appleton,Rutherford Appleton,Harwell,Harwell,Harwell,Harwell,Ox11 0fa,UK demang dement,UK D Inturand of nucement of nordy n forne Elettra-Sincrotrone Trieste, Strada Statale 14, 34149, Basovizza, Trieste, Italy f Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK g Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK h The University of Manchester at Harwell, Diamond Light Source, Harwell Science and Innovation校园,DIDCOT OX11 0DE,UK她效应大学,她的官员,S1 3JD,英国B b曼彻斯特大学化学工程系,曼彻斯特大学,曼彻斯特大学,M13 9PL,英国C英国C型催化枢纽,Harwell,Harwell,Harwell,Harwell,Rutherford Appleton,Rutherford Appleton,Harwell,Harwell,Harwell,Harwell,Ox11 0fa,UK demang dement,UK D Inturand of nucement of nordy n forne Elettra-Sincrotrone Trieste, Strada Statale 14, 34149, Basovizza, Trieste, Italy f Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK g Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK h The University of Manchester at Harwell, Diamond Light Source, Harwell Science and Innovation校园,DIDCOT OX11 0DE,UK她效应大学,她的官员,S1 3JD,英国B b曼彻斯特大学化学工程系,曼彻斯特大学,曼彻斯特大学,M13 9PL,英国C英国C型催化枢纽,Harwell,Harwell,Harwell,Harwell,Rutherford Appleton,Rutherford Appleton,Harwell,Harwell,Harwell,Harwell,Ox11 0fa,UK demang dement,UK D Inturand of nucement of nordy n forne Elettra-Sincrotrone Trieste, Strada Statale 14, 34149, Basovizza, Trieste, Italy f Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK g Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK h The University of Manchester at Harwell, Diamond Light Source, Harwell Science and Innovation校园,DIDCOT OX11 0DE,UK
用户必须在使用前确保产品在其应用中的适用性。产品仅符合该和其他相关HIMEDIA™出版物中包含的信息。本出版物中包含的信息基于我们的研发工作,据我们所知,真实而准确。Himedia™实验室Pvt Ltd保留随时更改规格和信息的权利。产品不适用于人类或动物或治疗用途,而是用于实验室,诊断,研究或进一步制造的使用,除非另有说明。本文包含的陈述不应被视为任何形式的保证,明示或暗示,也不应对侵犯任何专利的责任承担任何责任。
在气候变暖条件下,土壤无机碳(SIC)的储存和转换在调节土壤碳(C)动力学和大气CO 2中的含量中起着重要作用。碱性土壤中的碳酸盐形成可以以无机C的形式固定大量的C,从而导致土壤c下沉,并有可能减慢全球变暖趋势。因此,了解影响碳酸盐矿物形成的驱动因素可以帮助更好地预测未来的气候变化。迄今为止,大多数研究都集中在非生物驱动器(气候和土壤)上,而少数研究检查了生物驱动因素对碳酸盐形成和SIC库存的影响。在这项研究中,在藏族高原的贝卢赫盆地上分析了三个土壤层(0-5厘米,20-30厘米和50–60 cm)的SIC,方解石含量和土壤微生物群落。结果表明,在干旱和半干旱地区,SIC和土壤方解石含量在这三个土壤层之间没有显着差异。但是,影响不同土壤层中有方解石含量的主要因素是不同的。在表土(0-5厘米)中,方解石含量的最重要预测因子是土壤水含量。在下层土层中,分别为20–30 cm和50–60 cm,细菌生物量与真菌生物量(B/F)的比率分别比其他因素对方解石含量的变化具有更大的贡献。斜长石为微生物定殖提供了一个位点,而Ca 2 +在细菌介导的方解石形成中贡献。本研究旨在强调土壤微生物在管理土壤方解石含量中的重要性,并揭示了细菌介导的有机物转化为无机C的初步结果。
1转化微生物学小组,阿斯图里亚公国卫生研究研究所(ISPA),33011 Oviedo,西班牙2,西班牙2临床微生物学系,阿斯图里亚斯中央医院(HUCA),33011 Oviedo,西班牙Oviedo,西班牙Oviedo,西班牙33011年,西班牙3级奶牛研究所,Spurias of Asturias(ipla),西班牙国家研究所(IPLA),西班牙国家,33333333333333333333333333333333333333333333333333333 33 33 33 333 33011,ipla)。 Microhealth Group,Asturias公国卫生研究所(ISPA),33011 OVIEDO,西班牙5 5号,阿斯特里亚斯中央大学医院血液学系(HUCA)血液学系(HUCA),Asturias卫生研究所(ISPA)(ISPA)(ISPA)的研究所,Oncología(ISPA),Oncología(IUOPA),SPAIRINALION,33011 OVIIDO,33011 OVIIDO,33011 OVIIDO,oviedo, Oviedo,33006 Oviedo,西班牙7研究与创新,人工智能和统计部,Pragmatech AI解决方案,33001 Oviedo,西班牙8Biomédica在红色呼吸疾病中,Madrid,28029 Madrid,28029,Spain *通信: div>
已经开发出一种新的、精确的、准确的、特定的、耐用的和灵敏的等度 RP-HPLC 稳定性指示方法,随后根据 ICH 指南对其进行了验证,用于测定 API 和药物剂型中的瑞莫格列净和二甲双胍。在反相 Zorbax C18(250 mm x 4.6 mm)5µm 粒度色谱柱作为固定相和流动相、甲醇:磷酸盐缓冲液 pH-4.2(80:20 v/v)上实现分离,优化的其他条件为:流速(1.0 ml/分钟)、波长(250 nm),运行时间保持在七分钟。发现瑞莫格列净和二甲双胍的保留时间分别为 2.46 分钟和 4.32 分钟。通过研究药物在酸性、碱性、过氧化物、中性、热和紫外线条件下的降解来确定药物的稳定性。经发现,所开发的方法在 20-100µg/ml 范围内具有线性,在 40-120µg/ml 范围内具有线性,相关系数 (r 2 ) 为 0.999。经发现,雷莫格列净依碳酸盐和二甲双胍的回收率在 98-102% 范围内,证实了该方法的准确性。经发现,雷莫格列净依碳酸盐和二甲双胍的药物剂型纯度百分比为 99.87%。经发现,雷莫格列净依碳酸盐的检测限和定量限分别为 0.75µg/ml 和 3.30µg/ml,二甲双胍的检测限和定量限分别为 1.56µg/ml 和 6.28µg/ml。按照 ICH 指南对所开发方法的灵敏度、准确度、范围、精确度、稳健性、耐用性、稳定性、特异性、检测限、定量限和系统适用性参数进行了验证。
摘要:细菌在人类和动物中产生的抗生素治疗的耐药性发生在微生物抵抗临床批准的抗生素治疗时。必须采取行动,以阻止抗生素抗性的进一步发展和后续超级细菌的出现。用药重新利用/重新定位是一种策略,可以帮助发现新的抗生素,因为它加快了药物发育阶段。在其中,Zn 2+离子粘合剂(例如磺酰胺及其生物膜体)被认为是获得新型抗菌物的最有前途的化合物,从而避免了抗生素耐药性。磺酰胺及其生物同体具有数十年来众所周知的药物样性质,并且是开发新的药理学家族的合适铅化合物,用于抑制碳酸酐酶(CAS)。cas是甲基酶的超家族,可催化CO 2水合与HCO 3--和H +的可逆反应,在大多数细菌中存在于多种遗传家族中(α-,β-,γ-和i -classes)中的大多数细菌。这些酶(充当CO 2换能器)是有前途的药物靶标,因为它们的活性影响了宿主中微生物增殖,生物合成途径和病原体持久性。在其自然或稍微修饰的支架中,磺酰胺/硫酸盐/磺胺剂在感染了抗生素耐药菌菌株的小鼠模型中抑制了CAS的体外和体内,从而确保了它们在相反的细菌抗生素耐药性中的作用。
b'genation 的 C3 和 C2 位尚未开发。在此,我们报道了一种无催化剂获取 1-芳基 2,3-二碘咔唑 [7,8] 的方法,其中涉及碘转位(方案 1D)。值得注意的是,我们的方案允许在三个连续位置 [9] 即 C1、C2 和 C3 对咔唑核心进行可控官能化。环化前体 (碘吲哚基)炔醇 1a \xe2\x80\x93 n 是使用已知程序由适当的吲哚-2-甲醛制备的。[5] 我们的旅程始于研究苯基取代炔醇 1a 作为模型底物的反应(表 1)。 [10] 我们研究了 1a 与几种碘化试剂(如 I 2 、NIS、ICl 和 Ipy 2 BF 4 )的反应。在碳酸钠存在下,在异丙醇中,在 15 °C 下使用 ICl [11] 可有效实现串联碘环化-碘移位。使用 1.1 倍过量的 ICl 可得到三环 2a ,产率为 50%(表 1,条目 5),而使用 2.5 倍过量的 ICl 可得到所需的杂环,产率为 60%(表 1,条目 3)。通过对粗反应混合物进行 TLC 和 1 H NMR 分析观察到总转化率,未检测到副产物或聚合反应。然而,在柱层析纯化 2,3-二碘-咔唑 2a 的过程中观察到一些分解,这可能是导致分离产率适中的原因。值得注意的是,重排的 1-苯基-2,3-二碘-咔唑 2a 是唯一的区域异构体。使用有机碱代替 K 2 CO 3 或不同的溶剂'
新兴便携式电子设备、交通运输(如电动汽车、混合动力汽车、自动驾驶飞机等)和智能电网规模储能的快速发展刺激了对高能量密度、高安全性和低成本储能系统的需求不断增长。[1–4] 尽管如此,锂离子电池(LIBs)的持续大规模应用受到其成本飙升的制约,考虑到锂资源的短缺和分布不均,这往往还与不良的环境和人权记录有关,促使传统的 LIBs 被新的电池系统所取代。[5–7] 在众多负极材料中,钠(Na)金属被认为是下一代可充电电池的有前途的负极,因为它具有高的理论比容量(1165 mAh g-1)、低氧化还原电位(-2.714 V 相对于标准氢
