[1] Murray CJL, Aravkin AY, Zheng P, et al.Global burden of 87 risk factors in 204 countries and territories, 1990 – 2019: a systematic analysis for the Global Burden of Disease Study 2019[J].Lancet, 2020, 396 (10258): 1223-1249.[2] 王增武 , 马志毅 , 薛素芳 , 等 .基层冠心病与缺血性脑卒中共患管理 专家共识 2022[J].中国心血管病研究 , 2022, 20(9): 772-793.[3] 王拥军 , 李子孝 , 谷鸿秋 , 等 .中国卒中报告 2020 (中文版) (1)[J].中 国卒中杂志 , 2022, 17(5): 433-447.[4] Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation[J].Lancet, 2011, 377(9778): 1693-1702.[5] Xing Y, Bai Y.A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms[J].Mol Neurobiol, 2020, 57 (10): 4218-4231.[6] Guggisberg AG, Koch PJ, Hummel FC, et al.Brain networks and their relevance for stroke rehabilitation[J].Clin Neurophysiol, 2019, 130(7): 1098-1124.[7] Lutsep HL, Albers GW, Decrespigny A, et al.Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke[J].Ann Neurol, 1997, 41(5): 574-580.[8] 于帆 , Arman Sha, 张苗 , 等 .人工智能在急性缺血性脑卒中影像的研 究进展 [J].中华老年心脑血管病杂志 , 2023, 25(3): 334-336.[9] 李华 , 郭春锋 , 高连荣 .FLAIR 及 DWI 序列在诊断脑血管周围间隙 中的价值 [J].医学影像学杂志 , 2015, 25(8): 1341-1343.[10] Scheldeman L, Wouters A, Dupont P, et al.Stroke, 2022, 53(5): 1665-1673.[11] Thomalla G, Simonsen CZ, Boutitie F, et al.MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset[J].[15] 蔡建新 , 彭如臣 .扩散加权成像和流体且反转的恢复定量定量,以预测不明发作的缺血性中风中的易流性恢复不匹配的恢复不匹配状态[J]。《新英格兰医学杂志》,2018,379(7):611-622。[12] Legrand L,Turc G,Edilali M等。根据Flair血管高压不匹配而受益于血栓切除术后血运重建[J]。Eur Radiol,2019,29(10):5567-5576。[13] Xie Y,Oppenheim C,Guillemin F等。预处理病变量会影响临床结果和血栓切除术的功效[J]。Ann Neurol,2018,83(1):178-185。 [14] Raoult H,Lassalle MV,Parat B等。 基于DWI的算法可预测急性中风血栓切除术治疗的患者的残疾[J]。 Am J Neuroradiol,2020,41(2):274-279。 弥散张量磁共振成像方法概述[J]。 医学影像学杂,2007,17(10):1119-1122。 [16] Qiu A,Mori S,Miller MI。 扩散张量成像,用于理解早期生命中大脑发育[J]。 Ann Rev Psychol,2015,66:853-876。 [17] Corroenne R,Arthuis C,Kasprian G等。 胎儿大脑的扩散张量成像:有前途技术的原理,潜力和局限性[J]。 超声产科妇科,2022,60(4):470-476。 [18] Andica C,Kamagata K,Hatano T等。 源自扩散成像的退化性脑疾病的生物标志物[J]。 J Magn Reson Imaging,2020,52(6):1620-1636。 [19] Groisser BN,哥伦WA,Singhal AB等。 NeuroRehabil神经修复,2014,28(8):751-760。Ann Neurol,2018,83(1):178-185。[14] Raoult H,Lassalle MV,Parat B等。基于DWI的算法可预测急性中风血栓切除术治疗的患者的残疾[J]。Am J Neuroradiol,2020,41(2):274-279。弥散张量磁共振成像方法概述[J]。医学影像学杂,2007,17(10):1119-1122。[16] Qiu A,Mori S,Miller MI。扩散张量成像,用于理解早期生命中大脑发育[J]。Ann Rev Psychol,2015,66:853-876。 [17] Corroenne R,Arthuis C,Kasprian G等。 胎儿大脑的扩散张量成像:有前途技术的原理,潜力和局限性[J]。 超声产科妇科,2022,60(4):470-476。 [18] Andica C,Kamagata K,Hatano T等。 源自扩散成像的退化性脑疾病的生物标志物[J]。 J Magn Reson Imaging,2020,52(6):1620-1636。 [19] Groisser BN,哥伦WA,Singhal AB等。 NeuroRehabil神经修复,2014,28(8):751-760。Ann Rev Psychol,2015,66:853-876。[17] Corroenne R,Arthuis C,Kasprian G等。胎儿大脑的扩散张量成像:有前途技术的原理,潜力和局限性[J]。超声产科妇科,2022,60(4):470-476。[18] Andica C,Kamagata K,Hatano T等。源自扩散成像的退化性脑疾病的生物标志物[J]。J Magn Reson Imaging,2020,52(6):1620-1636。[19] Groisser BN,哥伦WA,Singhal AB等。NeuroRehabil神经修复,2014,28(8):751-760。皮质脊髓扩散异常[J]。[20] Kumar P,Kathuria P,Nair P等。使用扩散张量成像的亚急性缺血性卒中后上肢运动恢复的预测:系统评价和荟萃分析[J]。J Stroke,2016,18(1):50-59。[21] Soulard J,Huber C,Baillieul S等。运动道完整性预测步行恢复:亚急性中风中的扩散MRI研究[J]。神经病学,
5 上海交通大学生物医学工程学院,上海,200030 【摘要】脑机接口(BCI)设备是进行神经刺激和记录的重要工具,在神经系统疾病的诊断和治疗中有着广阔的应用前景。此外,磁共振成像(MRI)是一种有效且非侵入性的全脑信号捕获技术,可以提供大脑结构和激活模式的详细信息。将BCI设备的神经刺激/记录功能与MRI的非侵入性检测功能相结合对脑功能分析具有重要意义。然而,这种结合对神经接口设备的磁和电性能提出了特定的要求。首先探讨了BCI设备与MRI之间的相互作用,随后对二者结合可能产生的安全风险进行总结和整理,从BCI设备的金属电极、导线等危害的来源入手,分析了存在的问题,并总结了目前的研究对策。最后,简要讨论了BCI磁共振安全性的监管问题,并提出了增强相关BCI设备磁共振兼容性的建议。
[3] LIBOWITZ MR,WEI K,TRAN T,et al.Regional brain volumes relate to Alzheimer's disease cerebrospinal fluid biomarkers and neuropsychometry:A cross-sectional,observational study[J].PLoS One,2021,16(7):e0254332.[4] 王含春 , 汪群芳 , 罗长国 , 等 .磁共振薄层扫描结合人工智能脑结构分割技术分析海马体积辅 助诊断脑小血管病认知功能障碍 [J].全科医学临床与教育 ,2024,22(3):208-211.[5] 姜华 , 宛丰 , 吕衍文 , 等 .2 型糖尿病伴认知功能障碍患者基于体素的脑形态学 MRI 研究 [J].中 国 CT 和 MRI 杂志 ,2018,16(4):22-25.[6] 景赟杭 , 郭瑞 , 常轲 , 等 .2 型糖尿病性认知功能障碍脑结构 MRI 成像研究进展 [J].延安大学学 报(医学科学版) ,2024,22(1):88-91,107.[7] 郭浩 , 和荣丽 .磁共振成像对老年性痴呆患者海马解剖结构的评估价值研究 [J].磁共振成 像 ,2022,13(8):75-79.[8] 罗财妹 , 李梦春 , 秦若梦 , 等 .阿尔茨海默病谱系患者的海马亚区体积损害特征 [J].中风与神经 疾病杂志 ,2019,36(12):1097-1101.[9] 冯伦伦 , 金蓉 , 曹城浩 , 等 .阿尔茨海默病患者认知功能减退的海马亚区结构改变分析 [J].临床 放射学杂志 ,2022,41(10):1819-1824.[10] WEI Y,HUANG N,LIU Y,et al.Hippocampal and Amygdalar Morpho logical Abnormalities in Alzheimer,s Disease Based on Three Chinese MRI Datasets[J].Curr Alzheimer Res,2020,17:1221-1231 . [11] ESTEVEZ S S,JIMENEZ H A,ADNI G.Comparative analy sis of methods of volume adjustment in hippocampal volumetry for the diagnosis of Alzheimer disease[J].Neuroradiol,2020;47(2):161-5.[12] 曾利川 , 王林 , 廖华强 , 等 .结构与功能磁共振成像在轻度认知障碍及阿尔茨海默病中的应 用 [J].中国老年学杂志 ,2021,41(13):2902-2907.[13] KODAM P,SAI S R,PRADHAN S S,et al.Integrated multi-omics analysis of Alzheimer's disease shows molecular signatures associated with disease progression and potential therapeutic targets[J].Sci Rep,2023,13(1):3695.[14] 黄建 , 王志 .复杂网络分析技术在阿尔兹海默症患者脑结构和功能影像中的应用进展 [J].中 国医学物理学杂志 ,2024,41(8):1053-1055.[15] JELLINGER K A.The pathobiological basis of depression in Parkinson disease:challenges and outlooks[J].J Neural Transm(Vienna),2022,129(12):1397-1418.[16] BANWINKLER M,THEIS H,PRANGE S,et al.Imaging the limbic system in Parkinson's disease-A review of limbic pathology and clinical symptoms[J].Brain Sci,2022,12(9):1248.[17] 程秀 , 张鹏飞 , 王俊 , 等 .小脑结构与功能磁共振成像在帕金森病中的研究进展 [J].磁共振成 像 ,2022,13(4):146-149.[18] CUI X,LI L,YU L,et al.Gray Matter Atrophy in Parkinson's Disease and the Parkinsonian Variant of Multiple System Atrophy:A Combined ROI-and Voxel-Based Morphometric Study[J].Clinics(Sao Paulo),2020,75:e1505.[19] LOPEZ A M,TRUJILLO P,HERNANDEZ A B,et al.Structural Correlates of the Sensorimotor Cerebellum in Parkinson's Disease and Essential Tremor[J].Mov Disord,2020,35(7):1181-1188.[20] 鲍奕清 , 王二磊 , 邹楠 , 等 .帕金森病伴疲劳患者的大脑功能与结构磁共振成像研究 [J].临床 放射学杂志 ,2024,43(8):1265-1270.[21] 邹楠 , 王二磊 , 张金茹 , 等 .帕金森病伴疼痛患者大脑皮层厚度改变的结构 MRI 研究 [J].磁共 振成像 ,2024,15(5):13-18,23.[22] 屈明睿 , 高冰冰 , 苗延巍 .帕金森病伴抑郁在脑边缘系统结构及功能改变的 MRI 研究进展 [J].磁共振成像 ,2023,14(12): 127-131.
磁共振成像 磁共振成像或 MRI 是诊断和评估神经系统疾病的重要工具。MRI 扫描仪是一种设备,患者躺在一个圆柱形管内,管内有一个大型强力磁铁。磁铁与连接到计算机的无线电波相结合,可产生非常清晰和详细的身体图像。与 CT 扫描或传统 X 射线不同,MRI 不使用电离辐射。MRI 在脊髓和大脑成像方面特别有用。它既可用于诊断神经系统疾病,也可用于监测某些疾病,如多发性硬化症。对于某些 MRI 研究,可以使用造影剂(通常是钆)来增强某些组织的可见性。造影剂通过放置在手臂静脉中的小静脉 (IV) 管注入。在进行 MRI 之前,请正常饮食并服用您常用的药物,除非另有指示。您将获得医院的病号服或被指示穿着没有金属扣件的宽松衣服。由于机器内有强力磁铁,因此务必取下所有配件,例如珠宝或发夹/发夹。金属物体可能会在检查期间干扰磁场,影响 MRI 图像的质量。磁场还可能损坏电子产品。扫描时长取决于医生想要成像的内容。扫描时间可能只有几分钟到一个多小时。
半导体单壁碳纳米管(S-SWCNT)是一类重要的P-偶联有机半导体(OSC),可以启用新兴的光电应用。了解S-SWCNT中的电荷传输机制(通常是OSC)对于材料和设备设计至关重要。诸如光电,传感器,发光二极管,现场效应晶体管和热电设备等应用都需要良好的电导率和载体迁移率。测量OSC中电导率的常见方法不允许独立测量托管载体密度或移动性,因此很难回答重要的基本和应用问题并阻碍性能优化。为了解决这一知识差距,我们使用光吸收和核磁共振光谱开发了一种组合方法,以直接测量掺杂的S-SWCNT中的托管载体密度。我们证明了载体密度会影响电荷离域化,从而导致载体密度依赖性迁移率,这与被电离杂质散射限制的迁移率相反。将模拟与我们的实验数据结合起来会产生相关曲线,该曲线可以通过快速且随时可用的吸收光谱测量来确定掺杂的S-SWCNT中的载体密度。结果为OSC社区提供了一个有价值的路线图,用于调整,量化和优化载流子密度,以供广泛的能源收集和光电应用。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建iveco mmons。org/ licen ses/ by/ 4。0/。创意共享公共领域奉献豁免(http://创建iveco mmons。org/ publi cdoma在/零/ 1中。0/)适用于本文提供的数据,除非在数据信用额度中另有说明。
Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Neonatal Hypoxic-Ischemic Encephalopathy: A review article Barakat Mohammed Mahmoud a* , Mohammad Tharwat Mahmoud Solyman a , Mohammad Zaki Ali a , Khaled Fawzy Zaki a a Department of Diagnostic Radiology, Faculty of Medicine, Sohag,埃及。抽象背景:缺氧性缺血性脑病是新生儿脑病的子类别,被定义为一种定义为一种异质性的,临床上不同的综合征,其特征是神经学功能,神经学功能,肌肉局部异常肌肉和呼吸障碍的障碍,经常在未来的婴儿中伴随着新生儿的呼吸,伴随着降低的层次,并伴随着降低的层次,并降低,降低的层次,降低,降低的层次,降低,并降低。发起和维持呼吸。MRI在成像新生儿大脑和使用HII的新生儿的随访中起着越来越重要的作用。MR光谱允许立即分析新生儿大脑中的代谢产物,并且在评估神经系统结果和预后中也起着重要作用。质子MR光谱的效用可以检测到HII早于T2-或T1加权MR序列的新生儿的脑缺血性损伤。扩散加权成像对使用HII的新生儿早期检测到脑损伤的敏感性最高。在扩散加权成像处看到的发现主要在脑损伤后3 - 5天达到峰值,然后逐渐正常化。结论:MR光谱法是一种准确,敏感和非侵入性的方法,用于早期检测到围产期缺血性脑损伤。关键字:磁共振成像;磁共振光谱;新生儿缺氧性缺血性脑病。doi:10.21608/svuijm.2020.42497.1000 *通信:barakatmohammad267@gmail.com收到:2020年9月10日。修订:2020年9月20日。接受:2020年9月30日。出版:2023年9月30日,这篇文章为:Barakat Mohammed Mahmoud,Mohammad Tharwat Mahmoud Solyman,Mohammad Zaki Ali,Khaled Fawzy Zaki(2024)。新生儿缺氧 - 缺血性脑病中的磁共振成像和磁共振光谱:评论文章。SVU International医学科学杂志。第7卷,第1期,第8-16页。第7卷,第1期,第8-16页。
磁共振光谱(MRS)是一种无创技术,可用于测量组织中不同化学成分的浓度。该技术基于与磁共振成像(MRI)相同的物理原理,以及原子内部磁场和特定核之间能量交换的检测。使用MRI,通过根据发射信号的强度分配不同的灰色值,通过分配不同的灰色值,将这种能量交换以射频信号测量。MRI和MRS之间的主要区别在于,在MRI中,发射的射频基于核的空间位置,而MRS则检测到扫描组织的化学成分。MRS产生的信息以图形方式显示为与所检测到的各种化学物质一致的峰值的频谱。MRS可以作为MRI的辅助手术。首先生成MRI图像,然后在感兴趣的位点,在体素水平(3维体积X像素)处开发MRS光谱。感兴趣的体素(VOI)通常是一个立方体或矩形棱镜,尺寸像素的体积为1至8 cm。MRI提供了大脑的解剖图像,MRS提供了与潜在动态生理学相关的功能图像。MRS可以使用现有的MRI设备执行,并通过所有新的MRI扫描仪中提供的其他软件和硬件进行修改。扫描仪中的成像时间增加了15至30分钟。