3插入,用三个可能的自旋弹道在平均每个位置一个粒子的平均晶格上进行建模。我们提供了一个量子临界点的明确证据,将非磁性均匀金属相与存在长期“自旋”顺序的制度分开。通过不同的摩avors的规则,远程交替的多个连续过渡到磁性状态,随着相互作用强度的提高,其对称性会变化,显着地扩展了海森堡限制到巡回效率的先前工作。除了丰富的量子磁性外,与通常的SU(2)模型相比,这种重要的物理系统还允许研究整数填充和相关的Mott过渡,从而脱离了嵌套的距离。我们的结果还为解释当前和未来的实验提供了关于费米金碱 - 地球原子以及SU(N)物理学的其他实现的重要一步。
的生成,操纵和磁性域壁的传感是效率旋转器件设计的基石。半金属是为此目的而适合的,因为从自旋纹理处的自旋积累可以预期大型低场磁力信号。在一半金属中,la 1-x Sr x Mno 3(LSMO)锰矿被认为是其坚固的半金属基态的有前途的候选者,居里温度高于室温(t c = 360 K,x = 1/3)和化学稳定性。然而,由于各种磁磁性源的纠缠,即自旋积累,各向异性磁化率和巨大的磁化率,由于报道的值的差异很大,在报告的值中却差异很大,并且在报道的值中存在巨大差异。在这项工作中,在LSMO横形纳米线中测量了域壁磁磁性,其单域壁在整个路径上成核。磁阻的值超过10%,起源于由于传导电子对域壁的自旋纹理的误差效应而引起的自旋积累。从根本上讲,该结果表明了旋转纹理的非绝热过程的重要性,尽管与锰矿的局部t 2g电子相连。这些大的磁化值值足够高,足以编码和读取未来的氧化物自旋传感器中的磁位。
本文介绍了研究人员工作的希腊幼儿园教学干预的设计、实施和结果,强调了人工智能 (AI) 工具对儿童学习磁性概念的重大积极影响。教学干预是作为幼儿园已经处理过的特定主题单元的扩展而实施的,使用 STEM 工具和新技术。共实施了 3 项使用 AI 应用的活动,总时长为 8 个教学小时。该方法基于体验式和跨学科方法以及合作和好玩的学习。幼儿园老师在实施行动和儿童评估过程中发挥了帮助和支持作用。孩子们以小组形式工作,小组成员主要在他们遇到困难时为他们提供支持。孩子们只在遇到与操作软件的技术困难有关的问题时才向幼儿园老师求助。教育干预通过全体会议中各小组的工作展示进行评估。在教育干预结束时,询问孩子们他们喜欢什么,觉得什么困难。当前行动的结果非常令人鼓舞,因为人工智能工具的使用特别激发了孩子们对整个过程的参与,并在他们的心理潜力方面发挥了支持和创造性的作用。
例如,药丸形状的 PillCam 可以进入通过内窥镜手术难以进入或无法进入的胃肠道区域。[8] 然而,可摄取设备的尺寸从根本上受到吞咽能力(例如,PillCam SB 3 的直径为 11.4 毫米,长度为 26.2 毫米)[9] 和减少意外滞留(传统胶囊内窥镜为 1.4%)[10] 或需要手术干预的肠梗阻风险的限制。尺寸限制限制了可集成到可摄取系统中的可能功能,特别是因为微电子等有源元件是刚性平面部件,必须组装到系统中。例如,大多数可摄取电子产品无法主动输送到目标区域。[8]
*4 超热 AO:与室温相比具有极大热动能状态的原子氧 *5 FRP:纤维增强塑料 *6 质子磁力计:质子 利用质子(质子)发射电磁波现象的磁力计频率与磁场大小成正比
摘要。本文介绍了未爆炸弹药 (UXO) 在磁化过程中的物理模型和磁偶极子模型的公式推导。介绍了磁强计和电磁感应传感器在 UXO 检测中的应用。磁强计介绍了CS光泵海洋磁强计的全场测量技术和MagSTAR(Magnetic Scalar Triangulation and Ranging)梯度探测技术;电磁感应传感器介绍了Geophex公司和Geonics Ltd.的工作原理和目前流行的产品型号;美国海军研究实验室的MTADS(多传感器拖曳阵列探测系统)探测UXO的方法比较了与美国海军研究实验室目标识别方法的差异。
磁性ELD的精确度量是材料,地质,生物学,医学,安全,空间和物理科学中许多重要分析技术的核心。这些应用需要在广泛的规格范围内进行有关灵敏度,空间分辨率,带宽,可伸缩性和温度的操作。在这项工作中,我们开发了基于钻石中氮呈(NV)缺陷的磁力计的能力技术,该缺陷有望覆盖该参数空间的更大部分。我们研究了如何准备用于磁力测定法优化的钻石材料,并观察到了NV中心的基本光学和自旋特性。使用一种新的方案灵感来自于这些研究中收集的有关NV中心的新信息,我们构建了一个传感器,该传感器在许多领域的最先进方面进行了改进。最后,我们概述了改进这些传感器的计划,以研究目前使用现有技术无法访问的微观和纳米级磁现象。
核技术系应用工程,福岛技术学院Mishima Fumito 3-6-1 Gakuen,福岛市,910-8505电子邮件:f-mishim@fukui-ut.ac.jp
moiré超晶格可用于控制材料的电子特性,并可以导致新兴的相关和拓扑现象。非连续性状态和域结构,但对磁性行为的有效操纵仍然具有挑战性。在这里,我们报告了扭曲的双重双层中的电气可调式磁力,即双层和在它们之间有扭曲角的双层 - 分层抗fiferromagnet铬三碘化物。使用磁光kerr效应显微镜,我们观察到具有非零净磁化的抗铁磁和铁磁阶的共存,这是Moiré磁性的标志。这样的磁态延伸到各种扭曲角度(在0°和20°以上的跃迁),并表现出非单调温度依赖性。我们还展示了电压辅助的磁切换。通过模拟的Moiré磁性相图支持了观察到的非平凡磁状态以及通过扭角,温度和电控进行控制。
4.单位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・83
