我们研究了在“严格”空间变化的磁场(但不满足磁单极子条件)下相对论冷电子的二维运动。我们发现,在恒定磁场的情况下出现的朗道能级简并性在磁场变化时会消失,自旋向上和自旋向下电子的能级会根据磁场变化的性质以有趣的方式排列。此外,变化的磁场会将零角动量电子的朗道能级与正角动量分开,而恒定场只能将能级分为正角动量和负角动量。探索非均匀磁场中的朗道量子化本身就是一项独特的事业,对凝聚态物质、天体物理学和量子信息等领域都有跨学科影响。作为示例,我们展示了磁化白矮星,它们受到变化的磁场,同时受到洛伦兹力和朗道量子化的影响,从而影响底层的简并电子气,表现出对钱德拉塞卡质量极限的明显违反;并且在空间增长的磁场存在下,电子的量子速度会增加。
近年来,在建立几何与引力与量子纠缠之间的新关系方面取得了重大进展。一个重要的例子是 Ryu-Takayanagi 公式 [1],它在 AdS = CFT 对应关系 [2] 的背景下将共形场论 (CFT) 的纠缠熵与反德西特 (AdS) 空间中极小曲面的面积联系起来。此外,ER¼EPR 猜想 [3] 认为,热场双态 (TFD) 中的纠缠可以通过 AdS 空间中不可穿越虫洞中的测地线全息实现。测地线的长度(横跨 AdS 空间的两个边界)量化了纠缠量 [4]。在更简单的环境中,半经典惠勒虫洞 [5,6] 提供了一个早期的例子。该解的一个重要特征是所涉及的磁场不能以矢量势的形式全局写出。这相当于非精确辛形式,产生量化通量,类似于磁单极子 [7] 。最近,H. Verlinde [8] 通过分析虫洞的配分函数研究了量子力学虫洞的例子。对于具有非精确辛形式的系统,热配分函数变为