近年来,热电效应引起了材料科学、固体物理和化学领域的广泛关注。实际上,固态热电转换为能量收集和冷却提供了一种有前途的解决方案[1]。此外,研究热电现象对于理解固体材料中准粒子的基本传输行为也很重要[2]。材料的热电效率用性能系数zT=S2T/ρκ来衡量,其中S、T、ρ和κ分别是热电势、绝对温度、电阻率和热导率。S2/ρ称为热电功率因数。虽然表达式很简单,但获得高zT是一项具有挑战性的任务,因为这些传输参数是相互关联的。作为一项艰巨的任务,我们需要计算材料的热电效率,以确定材料的热电效率。
摘要:我们报告了如何使用对全尼克磁性磁性晶体(MPC)的斜向磁磁光(TMOKE)增强的空间来解决空间解析横向磁光kerr效应(TMOKE)增强的观察。首先,MPC中表面等离子体的激发导致15.3μm(18λ)GH偏移。然后,在存在横向磁场的情况下,在实验中,由GH偏移引起的反射光的侧向空间强度分布的调制[Tmoke(x)]达到4.7%。与MPC中常规TMOKE测量值相比,空间解析的Tmoke(X)值高几倍。在GH偏移下,空间分辨的磁光效应的概念可以进一步扩展到其他磁极纳米版本,以增强磁光效应,传感和光调制应用。关键字:鹅 - ha nchen换移,磁性粒细胞,磁性晶体,表面等离子体,横向磁光kerr效应■简介
简介:疫苗犹豫被定义为“尽管有疫苗接种服务,但仍推迟接受或拒绝接种疫苗”。许多国家报告称,新冠疫苗接种率低,这对结束这一流行病的努力来说是一个巨大的挑战。目的:在本研究中,我们旨在找出喀布尔医学生对新冠疫苗的接受率和犹豫率及其原因。方法:这项横断面研究是在喀布尔随机选择的五所大学的医学生中进行的,共有 459 名医学生完成了问卷调查。结果:医学生对新冠疫苗的犹豫率为 42.3%,男性的犹豫率高于女性。拒绝接种疫苗的主要原因是担心疫苗的安全性和副作用(62.3%)。超过一半的参与者(51.5%)已经接种过疫苗。 60.2% 的参与者表示,接种疫苗的主要原因是预防 COVID-19 病毒。这项研究表明,社交媒体是有关疫苗犹豫信息的主要来源(64.3%)。结论:这项研究表明,医学生对 COVID-19 疫苗的犹豫程度很高。强烈建议向社区,尤其是医学生提供有关 COVID-19 疫苗安全性和有效性的准确信息。关键词:COVID-19、医学生、疫苗犹豫
头皮上会突然出现一阵刺激,然后是短暂的停顿。很多人说感觉像静电或拍打。这种感觉通常在前几次治疗中最为强烈。随着治疗区域周围的神经逐渐适应刺激,这种感觉会随着时间的推移而减弱。• 您将在治疗期间接受 20 到 30 次治疗
有效检查区域。MIL-STD-1949 中的图 3 描述了一个偏移中心导体,没有理论依据表明有效检查区域等于导体直径的四倍。图 4 和图 5 显示了有效检查区域,没有考虑测试物品的磁导率,因此只是近似值。这种情况存在,因为没有付出足够的努力来确定准确的有效检查区域。从磁粉检测早期开始,经验法则就被业界毫无保留地接受了,这些经验法则是根据现场经验得出的。在每年的 ASTM 会议上,有充足的机会纠正这些问题区域,但这些问题并没有得到解决。。图 3 至图 5 为那些没有能力进行必要计算来确定有效检查面积的人提供了指导。这些数字对于粗略估计有效检查面积很有用,但如果不了解数字和公式的局限性,就不能应用于一般情况。。
* 通讯地址:X.-X.S.(songxx90@ustc.edu.cn), Q.Z.(iamqzhao@njupt.edu.cn), Y.X.(xuyong@njupt.edu.cn) 或 W.Q.(wqin@sdu.edu.cn)
1 1高级材料的地面工程中心和电弧培训中心,Swinburne技术学院,Swinburne技术学院,霍斯纳恩大学,VIC 3122,VIC 3122,澳大利亚2墨尔本纳米制造中心,惠灵顿路151号,惠灵顿路151号,澳大利亚3168,VIC 3168,澳大利亚312 Yealth 3 312澳大利亚4个光子学研究所和纳米技术学院,物理学院,维尔纽斯大学,索尔伊蒂基奥。 3,LT-10257 Vilnius,立陶宛5心理学科学学院,La Trobe University,墨尔本,VIC 3086,澳大利亚6 WRH计划国际研究边界计划(IRFI),东京技术研究所,Nagatsuta-Cho,Midori-Ku,Midori-Ku,Yokohama 226-8503503503,KANAGA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA, weerasuriya@gmail.com(c.w. ); suonhockng@swin.edu.au(S.H.N. ); sjuodkazis@swin.edu.au(S.J.)1高级材料的地面工程中心和电弧培训中心,Swinburne技术学院,Swinburne技术学院,霍斯纳恩大学,VIC 3122,VIC 3122,澳大利亚2墨尔本纳米制造中心,惠灵顿路151号,惠灵顿路151号,澳大利亚3168,VIC 3168,澳大利亚312 Yealth 3 312澳大利亚4个光子学研究所和纳米技术学院,物理学院,维尔纽斯大学,索尔伊蒂基奥。3,LT-10257 Vilnius,立陶宛5心理学科学学院,La Trobe University,墨尔本,VIC 3086,澳大利亚6 WRH计划国际研究边界计划(IRFI),东京技术研究所,Nagatsuta-Cho,Midori-Ku,Midori-Ku,Yokohama 226-8503503503,KANAGA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA, weerasuriya@gmail.com(c.w.); suonhockng@swin.edu.au(S.H.N.); sjuodkazis@swin.edu.au(S.J.)
演讲者 1:Simon Hanslmayr 教授,格拉斯哥大学心理学和神经科学学院教授,Braingrade GmbH 的科学顾问。标题:欢迎致辞摘要:我们关注的想法、感觉或面部表情都是由分布式大脑网络中协调的神经放电模式产生的。需要精确地安排这种神经活动的时间来表示大脑网络中的信息并形成持久的记忆。神经振荡建立了这种精确的时间,这就是我选择研究振荡以了解大脑如何实现认知的原因。为此,我的研究主要集中在健康人群的注意力和记忆过程,但我也对这些过程如何影响临床人群感兴趣,例如患有精神分裂症或创伤后应激障碍 (PTSD) 的患者。为了研究人类的神经振荡,我的实验室使用了广泛的电生理学和成像方法,从整体尺度(如 EEG/MEG、fMRI、EEG-fMRI 组合)到局部尺度(如人类颅内 EEG 和单个单元记录)。除了将振荡与认知关联起来之外,我们还通过有节奏的感官刺激(即闪烁或调幅声音)、有节奏的经颅磁刺激 (rTMS) 和经颅电刺激 (TES) 从外部扰动大脑来研究振荡的因果作用,并研究此类振荡扰动对认知的影响。最后,我们通过计算模型整合两种数据流(即相关和因果)的结果。这些模型会做出特定的预测,我们会在相关和因果实验中对其进行测试。我采用这种多学科、多模式和多尺度方法的目的是详细描绘人类大脑如何感知、存储和检索信息。