毫特斯拉至特斯拉级别的单片强磁感应为物理、化学和医疗系统提供了基本功能。当前的设计选项受到三维 (3D) 结构构造、电流处理和磁性材料集成方面的现有能力的限制。我们在此报告通过气相自卷膜 (S-RuM) 纳米技术将大面积和相对较厚 (~100 至 250 纳米) 的 2D 纳米膜几何转换为多圈 3D 空芯微管,并结合通过毛细力对磁流体磁性材料进行后卷集成。设计和测试了蓝宝石上的数百个 S-RuM 功率电感器,最大工作频率超过 500 MHz。单个微管电感器在 10 kHz 时实现了 1.24 H 的电感,相应的面积和体积电感密度分别为 3 H/mm 2 和 23 H/mm 3 。在 10 MHz 时,在制造的器件中模拟的磁感应强度达到数十毫特斯拉。
毫特斯拉至特斯拉级别的单片强磁感应为物理、化学和医疗系统提供了基本功能。当前的设计选项受到三维 (3D) 结构构造、电流处理和磁性材料集成方面的现有能力的限制。我们在此报告通过气相自卷膜 (S-RuM) 纳米技术将大面积和相对较厚 (~100 至 250 纳米) 的 2D 纳米膜几何转换为多圈 3D 空芯微管,并结合通过毛细力对磁流体磁性材料进行后卷集成。设计和测试了蓝宝石上的数百个 S-RuM 功率电感器,最大工作频率超过 500 MHz。单个微管电感器在 10 kHz 时实现了 1.24 H 的电感,相应的面积和体积电感密度分别为 3 H/mm 2 和 23 H/mm 3 。在 10 MHz 时,在制造的器件中模拟的磁感应强度达到数十毫特斯拉。
您理解并同意,您仍有责任在设计应用程序时使用您的独立分析、评估和判断,并且您有全部和专有的责任确保您的应用程序的安全性以及您的应用程序(以及在您的应用程序中或为您的应用程序使用的所有 TI 产品)符合所有适用的法规、法律和其他适用要求。您表示,对于您的应用程序,您拥有创建和实施保护措施的所有必要专业知识,这些保护措施可 (1) 预测故障的危险后果,(2) 监控故障及其后果,以及 (3) 降低可能造成损害的故障的可能性并采取适当的措施。您同意,在使用或分发任何包含 TI 产品的应用程序之前,您将彻底测试此类应用程序以及此类应用程序中使用的此类 TI 产品的功能。除了针对特定 TI 资源的已发布文档中明确描述的测试之外,TI 未进行任何其他测试。
在二维反铁磁半导体 CrPS 4 上实现的晶体管表现出大的磁导,这是由于磁场引起的磁状态变化。电导和磁状态耦合的微观机制尚不清楚。我们通过分析决定晶体管行为的参数——载流子迁移率和阈值电压——随温度和磁场的变化来确定它。对于接近尼尔温度 TN 的温度 T ,磁导源于由于施加的磁场导致的迁移率增加,从而降低了自旋涨落引起的无序。当 T << TN 时,变化的是阈值电压,因此在固定栅极电压下增加场会增加积累的电子密度。该现象通过导带边缘偏移来解释,该偏移是通过从头算正确预测的。我们的结果表明,CrPS 4 的能带结构取决于其磁状态,并揭示了一种以前未被发现的磁导机制。
近年来,人们对磁场对生物系统的影响的研究兴趣浓厚,尤其是与磁感应有关的研究——磁感应是生物体感知地球地磁场以进行导航的能力。目前,有三种公认的主要理论来解释这一有趣的现象。例如,一种假设认为,一些候鸟可能依靠喙中的微小磁性沉积物来定位。然而,由于缺乏确凿的证据,这一想法仍然是研究人员争论的话题。1 另一种有趣的理论认为,某些光敏蛋白(称为隐花色素)存在于选择性动物的眼睛中,可能充当地球磁场的化学探测器。这一想法近年来得到了广泛的关注,但与磁性沉积物假设一样,它也等待进一步的实验验证。磁感应的一个有趣的替代理论围绕磁趋化细菌 (MTB) 展开,这是一种沿着地磁场线定位的微生物。磁感应假说认为,这些与动物共生的细菌可能成为动物磁感应的潜在机制。”2,3 该理论提出,MTB 是长期存在的磁感应之谜的答案。
摘要:最近,人们对具有负磁导率并在 GHz 和 MHz 频率范围内工作的磁性超材料进行了大量研究。这些超材料结构可用于提高近场无线电力传输系统、地下通信和位置传感器的效率。然而,在大多数情况下,它们只设计用于单一应用。本研究重点研究磁感应波在有序排列的磁性超材料结构中的传输。该结构可同时用于无线电力传输和近场通信。单元由植入在 FR-4 基板上的五匝螺旋线形成。外部电容器用于调节磁性超材料单元的谐振频率。磁感应波的特性,包括反射、传输响应和波导上的场分布,已经得到了广泛的计算和模拟。获得的结果表明,一维和二维磁性超材料配置都具有传导电磁波和传播频率为 13.56 MHz 的磁场能量的能力。还研究了直路径和交叉路径配置,以确定二维超材料板上的最佳配置。
静磁场:磁静力定律、磁感应、磁场中运动的点电荷所受的洛伦兹力、磁场的发散、矢势、电荷守恒和连续性方程、洛伦兹条件、磁场的旋度、安培定律和标量势。
TRAX2 将 PNI 的高灵敏度磁感应传感器与高稳定性 3 轴 MEMS 加速度计相结合,可在各种条件下提供准确的航向信息,并能够克服局部磁场变化引起的误差。这提供了无漂移、高精度航向、俯仰和横滚以及长期静态精度。
TRAX2 将 PNI 的高灵敏度磁感应传感器与高稳定性 3 轴 MEMS 加速度计相结合,可在各种条件下提供准确的航向信息,并能够克服由局部磁场变化引起的误差。这可提供无漂移、高精度航向、俯仰和横滚以及长期静态精度。
尽管缺乏对潜在生物物理机制的明确了解,但鸽子感知地磁场的能力已得到最终证实。鸽子耳蜗中的准球形铁细胞器以前被称为“角质体”,由于其位置和铁成分,与磁感应具有潜在相关性;然而,目前有关这些结构的磁化率的数据有限。这里应用量子磁成像技术来表征单个铁角质体的原位磁性。从角质体发出的杂散磁场被映射并与详细的分析模型进行比较,以提供单个粒子的磁化率估计值。图像显示单个角质体内存在超顺磁性和亚铁磁性域,磁化率在 0.029 到 0.22 范围内。这些结果为了解角质体难以捉摸的生理作用提供了见解。测量的磁化率与基于扭矩的磁感应模型不一致,将铁储存和静纤毛稳定作为两个主要的假定角质体功能。这项研究确立了量子磁成像作为一种重要工具,可以补充现有的一系列用于筛选潜在磁性粒子磁受体候选物的技术。