我们建议使用二维 Penning 阱阵列作为量子模拟和量子计算的可扩展平台,以捕获原子离子。这种方法涉及将定义静态电四极子位置的微结构电极阵列放置在磁场中,每个位置捕获单个离子并通过库仑相互作用与相邻离子耦合。我们求解此类阵列中离子运动的正常模式,并推导出即使在存在陷阱缺陷的情况下也能实现稳定运动的广义多离子不变定理。我们使用这些技术来研究在固定离子晶格中进行量子模拟和量子计算的可行性。在均匀阵列中,我们表明可以实现足够密集的阵列,轴向、磁控管和回旋加速器运动表现出离子间偶极耦合,其速率明显高于预期的退相干。通过添加激光场,这些可以实现可调范围的相互作用自旋汉密尔顿量。我们还展示了局部电位控制如何隔离固定阵列中的少量离子,并可用于实现高保真门。使用静态捕获场意味着我们的方法不受系统尺寸增加时的功率要求限制,从而消除了标准射频陷阱中存在的重大缩放挑战。因此,这里提供的架构和方法似乎为捕获离子量子计算开辟了一条道路,以实现容错规模的设备。
1. 使用灯泡(电法)验证斯蒂芬辐射定律。2. 研究扭矩传感器的性能。3. 通过测量感应电压随时间的变化来验证法拉第和楞次感应定律。4. 研究磁场随亥姆霍兹排列中成对线圈沿载流线圈轴线位置的变化。5. 通过磁控管法确定电子的𝑒/𝑚(比电荷)。6. 使用真空管二极管 EZ-81 确定斯蒂芬常数。7. 研究线性可变差动变压器 (LVDT) 的特性。8. 表面张力 9. 验证斯托克斯定律 10. 使用应变计传感器测量压力 11. LDR 特性。12. 热膨胀。13. 通过测量辐射确定普朗克常数。 14. 研究耦合摆的正常模式和共振。15. 确定耦合摆中耦合弹簧的弹簧常数。16. 计算耦合摆的时间周期(𝑇 0 、𝑇 1 、𝑇 𝐵 和 𝜈 𝐵,耦合度)17. 用 Quincke 法确定顺磁性材料的质量磁化率 18. 通过测量固定光谱范围内的辐射确定普朗克常数的值。19. 利用牛顿环确定钠光的波长。20. 利用密立根油滴实验确定电子电荷。21. 研究 LDR、LED、太阳能电池、光电晶体管的 VI 特性。22. 四分之一波片。23. 马吕斯定律。24. 布儒斯特角。25. 单缝衍射。 26.双缝衍射。