背景。形成大质量恒星会发射磁源流出物,这实际上是寻找大质量恒星形成地点的标志。然而,直到最近几年,才有可能对这种磁驱动流出物的形成和传播进行理论和观察研究。目的。通过这项工作,我们旨在详细研究从大质量恒星形成早期阶段驱动高度准直流出的机制,以及这些过程如何受到形成大质量恒星的原生环境特性的影响。方法。我们进行了一系列 31 次模拟,旨在建立这些机制的统一理论图景,并确定不同环境的影响如何改变它们的形态和动量输出。磁流体动力学模拟还考虑了欧姆耗散作为非理想效应、自重力和尘埃和气体热吸收和发射的扩散辐射传输。我们从一个坍缩的云核开始,它被最初均匀的磁场穿过,并且正在缓慢旋转。我们在球坐标系中使用了二维轴对称网格。结果。在模拟中,我们可以清楚地区分快速的磁离心发射和准直喷流(速度 ≳ 100 km s − 1 )和由磁压驱动的更宽的磁塔流,后者会随时间而变宽。我们详细分析了流动的加速度,以及它在几百个天文单位的距离处被磁力重新准直。我们量化了磁制动对外流的影响,这会缩小系统后期演化的外流腔。我们发现,尽管自重力和介质热力学不可扩展,但我们的结果会随着云核的质量而变化,原则上可以用于这种质量的一系列值。我们观察到,对于大质量原恒星的诞生环境的各种假设,都存在相同的喷流驱动机制,但随着时间的推移,它们的形态和机械反馈会发生变化,从而达到更大的尺度。
由于纳米流体在工业和工程领域有广泛的用途,其在拉伸表面上的流动引起了广泛关注。近年来,磁流体动力学纳米流体中的传热和传质已成为研究的重点。本研究考察了在辐射和化学反应作用下,二维磁流体动力学纳米流体在拉伸板上的稳定流动。相似变换用于将偏微分方程转换为常微分方程,这些方程由 Mathematica12.0 求解。在视觉层面上,研究了不同无量纲参数对无量纲速度、温度和浓度分布的影响。观察到,热辐射增强了温度分布,而化学反应降低了浓度。随着辐射和化学反应的影响增加,物理参数(即努塞尔特数)减小,舍伍德数增加。在几种特殊情况下,将得到的数值结果与以前发表的结果进行了比较,发现结果非常一致。
业界越来越倾向于采用三维 (3D) 微电子封装,这要求开发新的创新型故障分析方法。为此,我们的团队正在开发一种称为量子金刚石显微镜 (QDM) 的工具,该工具利用金刚石中的一组氮空位 (NV) 中心,在环境条件下同时对微电子进行宽视野、高空间分辨率的矢量磁场成像 [1,2]。在这里,我们展示了 8 nm 工艺节点倒装芯片集成电路 (IC) 中的二维 (2D) 电流分布和定制多层印刷电路板 (PCB) 中的 3D 电流分布的 QDM 测量结果。倒装芯片中 C4 凸块发出的磁场在 QDM 测量中占主导地位,但这些磁场已被证明可用于图像配准,并且可以减去它们以分辨芯片中微米级相邻的电流轨迹。通孔是 3D IC 中的一个重要组件,由于其垂直方向,因此仅显示 B x 和 B y 磁场,而使用传统上仅测量磁场 B z 分量(与 IC 表面正交)的磁强计很难检测到这些磁场。使用多层 PCB,我们证明了 QDM 能够同时测量 3D 结构中的 B x 、B y 和 B z 磁场分量,这对于在电流通过层间时解析通孔磁场非常有利。两个导电层之间的高度差由磁场图像确定,并且与 PCB 设计规范一致。在我们最初使用 QDM 为复杂 3D 电路中的电流源提供更多 z 深度信息的步骤中,我们证明了由于麦克斯韦方程的线性特性,可以从整个结构的磁场图像中减去各个层的磁场图像。这允许从设备中的各个层中分离信号,该信号可用于通过求解 2D 磁逆来映射嵌入式电流路径。这种方法提出了一种迭代分析协议,利用神经网络对包含各种类别的电流源、隔离距离和噪声的图像进行训练,并结合 IC 的先验信息,
摘要 业界采用三维 (3D) 微电子封装的趋势日益增长,这要求开发新的创新型故障分析方法。为此,我们的团队正在开发一种称为量子金刚石显微镜 (QDM) 的工具,该工具利用金刚石中的一组氮空位 (NV) 中心,在环境条件下同时对微电子进行宽视野、高空间分辨率的矢量磁场成像 [1,2]。在这里,我们展示了 8 nm 工艺节点倒装芯片集成电路 (IC) 中的二维 (2D) 电流分布和定制多层印刷电路板 (PCB) 中的 3D 电流分布的 QDM 测量结果。倒装芯片中 C4 凸块发出的磁场在 QDM 测量中占主导地位,但这些磁场已被证明可用于图像配准,并且可以减去它们以分辨芯片中微米级相邻的电流轨迹。通孔是 3D IC 中的一个重要组件,由于其垂直方向,因此仅显示 B x 和 B y 磁场,而使用传统上仅测量磁场 B z 分量(正交于 IC 表面)的磁强计很难检测到这些磁场。使用多层 PCB,我们证明了 QDM 能够同时测量 3D 结构中的 B x 、B y 和 B z 磁场分量,这对于在电流通过层之间时解析通孔产生的磁场非常有利。两个导电层之间的高度差由磁场图像确定,并与 PCB 设计规范相符。在我们为以下提供进一步 z 深度信息的初始步骤中
摘要。磁流变弹性体 (MRE) 是一种智能材料,由嵌入微/纳米级磁性颗粒的聚合物基质组成。其机械性能会受到外部磁场的改变。在本文中,使用 COMSOL 多物理有限元分析 (FEA) 软件对 MRE 进行了粒子级(微尺度)的磁-机耦合物理研究。在磁场影响下对 MRE 进行了线性和扭转传递率分析。模拟结果表明,线性和扭转刚度均随磁场增加。在磁场的初始影响下,结果表明线性和扭转模式下的刚度分别增加了 28.75% 和 20.12%。传递率曲线显示,由于暴露于磁场时刚度增加,固有频率发生了变化。通过实现最小传递率因子来实现隔振。
当前工程技术的发展要求高精度、高质量、高生产率的制造系统,以满足当前工业需求。这为开发符合制造所需产品特定标准的新型高效加工工艺创造了独特的机会。使用传统加工工艺很难加工硬度、强度、韧性、柔韧性等性能显著提高的新材料 [1,2]。UMP 提供了生产具有复杂设计要求和精确尺寸特征和参数的相对较新材料的组件和形状的前景。混合材料的快速增长和设备的小型化建议使用高精度、无缺陷加工来满足所需的效率。具有韧性、抗拉强度、抗压强度、弹性等更高物理性能的复合材料和合金已广受欢迎,因为它为满足当今众多领域的需求提供了有效的解决方案,例如应用热电
4.3.1 电离技术 .................................................................................................... 142 4.3.2 种子研究 .................................................................................................... 158