其中w h与激发频率成正比,并且W e与激发频率3的平方成正比。在低于1 kHz的较低含量频率的应用中,例如运动核,磁滞损失对铁损失的影响大于涡流损失的影响。由于SMC核的磁滞损失高于电钢4),因此由于将SMC核应用于电动机而导致的运动效率降低是一个问题。在这种背景下,SMC核心的磁滞损失的减少对于扩大这种类型的核心的应用至关重要,并且已经进行了各种研究5-6)。但是,在大多数情况下,很难对磁滞损失进行定量讨论,因为在这些研究中影响了SMC核心的磁滞损失,并且很难定量地将这些因素分开。因此,为了进一步减少SMC核心的磁滞损失,定量分离影响Hystere SIS损失的因素并减少每个因素的影响很重要。因此,在这项研究中,进行了以下内容,以阐明减少SMC核心磁滞损失的指南。首先,安排了影响顽固性的微观结构因素的常规知识,与滞后丧失密切相关,并得出了磁滞损失和微结构因素的关系方程。然后,量化了微结构因子对SMC核心磁滞损失的影响,并且具有最大的因素
1。研究P-N二极管的I-V特征。2。找到半导体的霍尔系数的值。3。通过螺旋方法找到电子的E/M值。4。使用四个探针方法找到内在半导体的带隙。5。找到氩气的闪烁和淬火潜力,并找到未知电容器的电容。6。使用光电细胞找到普朗克常数的值。7。通过使用PT电阻温度计,通过邮局来找到电阻的温度系数。8。使用甲拉头管找到氩/汞的电离潜力。9。研究磁场的变化,并通过Stewart和Gee的设备找到线圈半径。10。研究(Cu-Fe,Cu-Constantan)热电偶的特征。11。通过追踪B-H曲线来计算磁滞损失。12。通过压电方法找到超声波的频率。13。验证Richardson热离子方程。14。使用CRO实现半波和全波二极管整流器。
渗透性和矫正性是评估软磁性材料的最重要参数。最柔软的磁性材料的标准要求非常高的渗透性和 /或极低的可矫正性,这些特性需要各向异性能量,磁弹性能趋于零。当对纳米晶材料的粉状类型的纳米晶体材料进行热处理时,这些独特的需求就会满足。为了将微结构特征与合金的软磁性和在不同温度下退火的环形样品的最初渗透性相关联,在室温下使用10 -3 OE的AC场测量。磁性磁滞是永久磁性材料的有用属性,我们希望在其中存储大型亚稳态磁化。另一方面,大量的应用需要每个周期的小磁滞损失。这些包括电感器,低频和高频变压器,交替的电流机器,电动机,发电机和磁性放大器的应用。目前的论文着重于测量其无定形和纳米晶体状态的样品的渗透率和磁滞回路。关键字:渗透性,胁迫,磁弹性,finemet,纳米晶,磁滞等。
B第1部分.0回答以下2*8 = 16 1.1命名用于电源变压器核心的特殊类型的钢类型1.2定义术语电阻率。1.3涡流是什么意思?1.4提及绝缘材料的特性?1.5解释术语 - 强制性和磁滞损失。1.6什么是介电偏振?1.7列出碳纳米管的应用1.8我们在哪里使用Megger?1.9什么是超导性?1.10命名一些可以用作导电材料的合金。2.0回答以下六个3*6 = 18 2.1状态至少三个标准,以选择变压器芯和电旋转机的材料。2.2什么是“居里点?它提供了什么信息?2.3定义:残余磁性和磁饱和度。2.4区分“ Ferri”和“ Ferro”磁性材料。2.5什么是R值?2.6什么是介电常数?它对介电材料有什么影响?2.7解释术语:体积电阻和表面电阻2.8解释霍尔效应3.0回答以下四个4*4 = 16 3.1您通过“磁性材料”一词了解什么。命名材料分配的类别。3.2什么是不同类型的绝缘材料?列出可能的固体绝缘材料。3.3光电二极管如何在反向偏置中起作用?3.4纳米技术在农业及其可持续性中的作用是什么?3.5 What is Piezo-electric effect?解释。3.6说明术语:照片发射细胞,照片导电细胞和照片伏特细胞。
图 3.6(b):钢 B 的破坏性试验结果与非破坏性 ABI 方法确定的主曲线叠加。仅获得两个不稳定断裂 ......................................................................................................................................42 图 3.7(a):SMA 焊缝的破坏性试验结果与非破坏性 ABI 方法确定的主曲线叠加。在 0 o C 时未获得不稳定断裂 .............................................................................................................................43 图 3.7(b):FCA 焊缝的破坏性试验结果与非破坏性 ABI 方法确定的主曲线叠加....................................................................................44 图 3.8(a):SMA 焊缝的正则化图。破坏性测试结果和非破坏性测试结果的参考温度分别为 -62 o C 和 -48 o C。........45 图 3.8(b):FCA 焊缝的正则化图。破坏性测试结果和非破坏性测试结果的参考温度分别为 -9 o C 和 -49 o C。..........45 图 3.9:钢 A 的标准化图。破坏性试验结果和非破坏性试验结果的参考温度分别为 -77 o C 和 -60 o C.................................46 图 4.1:疲劳试验样品示意图 ......................................................................................50 图 4.2(a):应变应用与时间示意图 .............................................................................51 图 4.2(b):与应变应用相对应的机械磁滞回线(图 4.2(a))。................................................................................................................51 图 4.2(c): 对应于应变循环的 B 场测量(图 4.2a)........................................................52 图 4.3(a): 机械磁滞随循环次数变化的不同阶段.........................................................................................................52 图 4.3(b): 机械磁滞和 B 场的阶段与循环次数的关系.........................................................................53 图 4.4(a): 磁滞损失和 B 场/循环与循环次数的关系(低循环疲劳).........................................................................54 图 4.4(b): 磁滞损失和 B 场/循环与循环次数的关系(高循环疲劳).........................................................................55 图 5.1: 本程序中使用的 MT 样本示意图.............................................................................57 图 5.2: 样本照片,显示一个焊缝上的点焊探针脚趾。另一焊趾经过打磨和锤击处理....................................................................................58 图 5.3:使用 MWM 传感器沿焊缝横向进行的渗透性测量示例.............................................................................58 图 5.4:疲劳试验台上安装有 PD 探头的样本.............................................................................59 图 5.5(a):NPD 读数与循环次数.........................................................................................................60 图 5.5(b):NPD 读数与循环次数(通道 12 和参考探头)....................................................60 图 5.6(a):原始 PD 读数与循环次数(通道 12).........................................................................61 图 5.6(b):原始 PD 读数与循环次数(参考探头).........................................................................61 图 7.1:裂纹扩展仪示意图(CPA 图案).............................................................................67断裂股线与电阻的关系......68 图 7.3(a):在缺口两侧安装两个仪表的中拉伸试样照片.........................................................................................................69 图 7.3(b):疲劳试验装置照片.........................................................................................................69 图 7.4:使用改进和标准安装程序的两个仪表在疲劳试验期间的电压与时间关系图.........................................................................70 图 7.5(a):使用改进安装程序的仪表的电压与时间关系图(图 7.4 的缩放图).........................................................................................71