采用密度泛函理论的第一性原理计算,表征了浓度 x = 0. 25、0.5 和 0.75 时 Ca 1-x Cr x O 化合物的结构性质、电子结构和由 Cr 杂质引起的铁磁性。通过声子谱计算获得动态稳定性。使用 Wu-Cohen 广义梯度近似计算结构参数,而电子和磁性则通过精确的 Tran-Blaha 修正的 Becke-Johnson 交换势确定。研究了晶体场、直接和间接交换分裂以确定铁磁态配置的起源和稳定性。Ca 1-x Cr x O 系统具有右半金属性,这通过 100% 的自旋极化和总磁矩的整数值得到验证。 Ca 0.75 Cr 0.25 O、Ca 0.5 Cr 0.5 O 和 Ca 0.25 Cr 0.75 O 是半金属铁磁体,其翻转间隙分别为 1.495、0.888 和 0.218 eV。因此,Ca 1-x Cr x O 材料是未来半导体自旋电子学中自旋注入可能应用的合适候选材料。
液氮温度[3]或单个原子表现出极长的磁性松弛时间。[4-6]特别是,基于晚期兰烷基家族元素(如DID和TB)的系统在很大程度上是焦点,包括单分子[2,3]单原子,[4,5]或单链磁铁。[7,8] SMM在表面上的吸附允许研究单个分子单元,并实现用于在分子规模的旋转型或量子计算设备中实施SMM的运输方案。[9–17]然而,从大量到表面支持的系统的转换通常会随着SMM特性的实质变化甚至丧失,即磁矩,磁性抗溶剂或磁化行为。[18-21]在金属表面上,磁矩与表面的相互作用相当强,这可以通过近神经效应的观察来证明。[22,23]因此,在过去几年中,在底物上报道了表面吸附的SMM的磁性磁性的基准测量,在这些底物上,分子在电子上弱耦合到–TBPC 2上的hopg上的hopg上的tbpc 2,[24] [24]在mgo/ag(100)上[25]以及限制了限制/限制的限制,[26] blocke of light in limit conding of light of condect in limim conding nock in n opping bocke in [26] block ind bock ind bock ind offing bocke nock in n off ins [26]手,DYSC 2 N@C 80单层(111)[27]最近显示出在高达10 K的温度下进行的滞后开口。从这个意义上讲,据报道,lanthanide离子在C 80分子中包含在C 80分子中的大多数SMM,它们的化学鲁棒性和缓慢的磁性松弛的结合。第二需要提出适当的分子沉积方法,这些方法可从表面提供足够的SMM脱钩。[27–31]要进一步推动Monayer制度中的磁性生命周期,必须满足两个重要的标准:第一个要求是合成体积中表现出本质上高的T B的SMM化合物。在这项工作中,我们提供了有关在石墨烯/IR(111)表面上的DY 2 @C 80(CH 2 PH)中出色的慢速磁性松弛的实验证据。通过电喷雾沉积法沉积的DY 2 @c 80(CH 2 PH)分子被组织到岛上,如低温扫描隧道显微镜(STM)成像所示。我们通过X射线吸收光谱(XAS)和X射线磁性圆形二色性(XMCD)测量来探索它们的磁性特性。对Dy 2 @c 80(Ch 2 pH)吸附在石墨烯/IR(111)的磁性松弛行为的分析产生了
在图案化的周期性周期性纳米线上大大增强了Faraday旋转,在二晶型铁石榴石膜上[10]。大多数表面等离子体的研究都集中在金属等贵金属上。但是,这些金属必须与光学活性材料结合使用,以提供血浆的主动控制。特别是,可以用应用于磁性金属杂种系统的磁场来控制磁质量[11,12]。磁光kerr效应(moke)将线性极性光转换为Mo材料中的椭圆极化光。最近,Moke已用于检测磁性纤维中的SOC相关扭矩,例如通过电子旋转角动量和光线之间的相互作用,例如绝缘Yttrium-Iron Garnet(YIG)和金属COFEB以及重金属PT异质结构[13,14]。YIG中的摩克很小,对于近红外波长。用二晶体或稀土元素代替Yttrium可以增强摩克,而磁矩只有很小的变化[15-18]。双掺杂的YIG中的大Mo效应是由原子内轨道偶极子偶极转变在CE的4F和5D状态之间或Inter- inter-
我们考虑三层 F 1 F 2 F 3 约瑟夫森结,它们在二维上是有限的,并且每个铁磁体 F i (i=1,2,3) 具有任意磁化强度。三层夹在两个 s 波超导体之间,它们具有宏观相位差∆ φ。我们的结果表明,当磁化具有三个正交分量时,超电流可以在∆ φ = 0 处流动。利用我们的广义理论和数值技术,我们研究了电荷超电流、自旋超电流、自旋扭矩和态密度的平面空间分布和∆ φ 依赖性。值得注意的是,当将中心铁磁层的磁化强度增加到半金属极限时,自偏置电流和感应二次谐波分量显著增强,而临界超电流达到其最大值。此外,对于很宽范围的交换场强度和方向,系统的基态可以调整为任意相位差 ϕ 0 。对于中间层 F 2 中的中等交换场强度,可以出现 ϕ 0 状态,从而产生超导二极管效应,从而可以调整 ∆ ϕ 以产生单向无耗散电流。自旋电流和有效磁矩揭示了半金属相中的长距离自旋扭矩。此外,态密度揭示了相互正交磁化配置的零能量峰的出现。我们的结果表明,这种简单的三层约瑟夫森结可以成为产生实验上可获得的长距离自偏置超电流和超流二极管效应特征的绝佳候选者。
The outcomes of computational study of electronic, magnetic and optical spectra for A 2 BX 6 (A = Rb; B = Tc, Pb, Pt, Sn, W, Ir, Ta, Sb, Te, Se, Mo, Mn, Ti, Zr and X = Cl, Br) materials have been proceeded utilizing Vanderbilt Ul- tra Soft Pseudo Potential (US-PP) process.RB 2 PBBR 6和RB 2 PBCL 6被发现是一个()半导体,能量差距分别为0.275和1.142 eV,使它们成为有前途的光伏材料。已证实了RB 2 BX 6(B = TC,W,W,IR,TA,MN,SB,MO)的材料的金属材料,显示了进行谱系的出席率。发现介电函数靠近紫外线区域(3.10-4.13 eV)。RB 2 BX 6的灭绝系数具有用于侵犯的能力。状态的带结构和密度确保磁性半导体的性质2 Mn(Cl,Br)6个钙钛矿。RB 2 MNCL 6和RB 2 MNB 6的总计算磁矩为3.00μβ。先进的自旋技术需要室温的铁磁性。目前的工作证实,溴和氯的双钙钛矿对光伏和光电设备具有极大的吸引力。
随着半导体器件的缩小尺寸出现饱和迹象,微电子学的研究重点转向寻找基于新颖物理原理的新型计算范式。电子自旋是电子的另一个固有特性,它为目前在微电子学中使用的基于电子电荷的半导体器件提供了附加功能。自旋电流注入、自旋传播和弛豫以及栅极的自旋方向操控等几个基本问题已成功得到解决,从而使电子自旋能够用于数字应用。为了通过电方法产生和检测自旋极化电流,可以采用磁性金属触点。Boroš 等人 [1、2] 讨论的铁磁触点应足够小,以构成具有明确磁化方向的单个磁畴。小畴的磁矩在过去曾被成功利用,现在仍用于在磁性硬盘驱动器中存储信息。由此,二进制信息被编码到畴的磁化方向中。畴的磁化会产生可检测到的杂散磁场。交变磁矩会产生方向相反的磁场。读头可以检测到磁场并读取信息。Khunkitti 等人 [ 3 ] 的研究显示,高灵敏度磁头是实现超高磁密度磁数据存储技术的重要因素。为了写入信息,需要通过流入磁头的电流产生接近磁畴的磁场。正如 Khunkitti 等人 [ 4 ] 所指出的,记录密度主要取决于磁性介质的特性。如果没有外部磁场,磁畴的磁化将得以保留,不会随时间而改变。因此,在电子设备中添加磁畴可实现非易失性,即无需外部电源即可保持设备功能状态的能力。此外,可以通过在小磁畴中运行自旋极化电流来操纵其磁化方向。如果电流足够强,磁畴的磁化方向与自旋电流极化方向平行。通过电子电流对磁畴进行纯电操控,为开发一种具有更高可扩展性的概念上新型的非易失性存储器提供了令人兴奋的机会。冲击自旋极化电流可以由流经另一个铁磁体的电荷电流产生,该铁磁体与小磁畴之间由金属间隔物或隧道屏障隔开。由两个铁磁触点组成的夹层结构的电阻在很大程度上取决于触点在平行或反平行配置中的相对磁化方向。因此,编码到相对磁化中的二进制信息通过夹层的电阻显示出来。这种新兴的存储器被称为磁阻存储器。磁阻存储器结构简单。它们具有出色的耐用性和高运行速度。磁阻存储器与金属氧化物半导体场效应晶体管制造工艺兼容。它们为概念上新的低功耗数据计算范式开辟了前景
根据管理协议,NASA 的责任摘要:N/A 1.1 即将完成的任务里程碑时间表: ˆ 航天器发货:2023 年第一季度 ˆ 首次发射:2023 年第二季度 1.2 任务概述:Starfish Otter Pup 任务是一艘演示太空拖船,旨在测试低地球轨道 (LEO) 中的会合、近距操作和对接 (RPOD) 技术。Otter Pup 将与客户航天器(名为 Orbiter 的 Launcher Inc. 轨道转移飞行器 (OTV))分离、接近和对接。主要有效载荷由 Starfish Space 制造,包括 Nautilus 捕获机制、CETACEAN 相对导航软件和 CEPHALOPOD 制导和控制软件。其他有效载荷(Exotrail SA 提供的电力推进推进器和 Redwire 提供的用于相对导航的 Argus 相机)集成到基于 Astro Digital Micro+ 设计的航天器总线中。这种标准化卫星平台使用反作用轮、磁矩线圈、星跟踪器、磁力计、太阳传感器和陀螺仪,无需使用推进剂即可实现精确的 3 轴指向。1.3 运载火箭和发射场:托管在 Launcher Orbiter OTV 上,由 SpaceX Falcon 9 拼车任务发射,发射场为卡纳维拉尔角太空发射中心。1.4 拟议的初始发射日期:2023 年第二季度,SpaceX Transporter-8
近90年来,人们认为进动和放松过程占据了磁化动力学。直到最近才认为,在短时间内,惯性驱动的磁化动力学应变得相关,从而导致磁化载体的额外营养。在这里,我们通过突然激发了具有超短光脉冲的薄ni 80 fe 20(Permalloy)膜,从而导致有效轨道作用于磁矩,将磁化强度的动力学分开,从而使磁力的动力学与它的角动力分开。我们通过时间分辨的磁光kerr效应在实验上研究了惯性方向的磁化动力学。我们发现,Kerr信号中的特征振荡范围为〜0.1 THz的范围为0.1 THz,其在pressional振荡上以GHz频率叠加。通过与原子自旋动力学模拟进行比较,我们证明了该观察结果不能用众所周知的Landau-Lifshitz-Gilbert运动方程来解释,但可以归因于惯性贡献,从而导致磁化载体围绕其角度动量的营养。因此,惯性磁化动力学的光学和非谐振激发可以触发和控制不同的磁过程,从通过活动器的消极作用到单个设备中的进动。这些发现将对对超快自旋动力学和磁化切换的理解具有深远的影响。
自 20 世纪末首次在原子气体中实现玻色-爱因斯坦凝聚以来,超冷原子气体已成为研究各种量子现象的广泛采用的平台。近年来,人们越来越关注具有大磁偶极矩的物质,因为这些物质与更常见的碱金属相比表现出更强的长程相互作用。镝的磁矩约为 10 𝜇 𝐵 ,是磁性最强的原子物质,因此已成为研究长程(偶极-偶极)相互作用与接触相互作用竞争或占主导地位的系统的理想平台。在本文中,我描述了一种新型镝量子气体机的设计和优化。除了详细描述该装置的组件及其性能外,我还详细描述了用于提高磁光阱 (MOT) 负载率的“角度减速”技术的特性和优化。我还详细描述了使用该装置生产和检测第一个玻色-爱因斯坦凝聚体 (BEC) 的过程。本论文还详细描述了用于镝实验的新控制硬件和软件的开发,但可以(并且已经)用于其他量子气体实验。在硬件方面,我讨论了高性能模拟电压控制通道的设计,这些通道比市售的替代方案更具优势。在软件方面,我讨论了我设计的实验室控制和记录数据库系统,它既扩展了我们的控制软件的功能,又简化了实验室数据的存储和可访问性。
测量被困的(remanent)磁矩M陷阱(H),当在超导导向过渡温度下方冷却下方的小磁场H之后,在零磁场中冷却后,在冷却后上下倾斜磁场时,将磁场上下倾斜时,在困难的小样本中提供了相关的液态,并在零磁场中提供了很大的益处。 (UHTS)。直到最近,由于所涉及的物理学的简单性,对于众所周知的临界状态模型,还不需要在被困的磁通量上单独的纸张。但是,最近的出版物表明需要进行这种分析。本说明总结了具有恒定临界电流密度的Bean模型的期望,并且具有与场相关的临界电流的KIM模型。表明,如果将被困的力矩拟合到功率定律,m trap ∝hα,则固定指数α= 2对于bean模型来说是精确的,而KIM模型显示了可能值的很大的间隔,2≤α≤4。此外,考虑可逆磁化的考虑将可能的指数的范围扩展到1≤α≤4。此外,撤电因子至关重要,并且即使在各向同性材料中也使捕获的力矩方向取决于。作为一种具体的应用,可以通过这种广义方法很好地描述了在H 3 S UHTS化合物上进行的通量捕获实验,从而对II型在超高压力下H 3 s的超导性质提供了进一步的支持。