6.3 安装变型................................................................................................................................................ 27 6.3.1 安装................................................................................................................................... 27 6.3.2 安装防恐慌锁芯................................................................................................................ 31 6.3.3 安装 SKG/VdS 锁芯....................................................................................................... 34 6.3.4 半锁芯 DK/MR..................................................................................................................... 36 6.3.5 安装瑞士圆形锁芯.................................................................................................................... 43 6.3.6 DoorMonitoring 的磁板.................................................................................................... 43
无锡芯朋微电子有限公司保留对本文中任何产品或规格进行更改的权利,恕不另行通知。无锡芯朋微电子有限公司不承担将其任何产品用于任何特定用途的任何责任,也不承担因其任何产品或电路的应用或使用而产生的任何责任。无锡芯朋微电子有限公司不转让其专利权或其他权利或他人权利下的任何许可。
过温保护(OTP) VDD 欠压/过压保护(UVLO&OVP) 逐周期电流限制(OCP) Cs 短路/开路保护(CS O/SP) 反馈环路开路保护(OLP)
蓝牙 5.0 BR/EDR/BLE 专有双模 RF SOC 极低功耗 10nA 关机模式(外部中断) 800nA 睡眠模式(32kHz RC OSC,睡眠定时器和寄存器 ON) 2.1uA 保持模式(32kHz RC OSC,睡眠定时器,2k 保持存储器和寄存器 ON) Rx 峰值电流(不带 DCDC) BLE/2.4G 模式下 16mA EDR 模式下 17mA Tx 峰值电流(不带 DCDC)@ -2dBm BLE/2.4G 模式下 22mA EDR 模式下 23mA Rx 峰值电流(带 DCDC) BLE/2.4G 模式下 6.75mA EDR 模式下 7.25mA BLE/2.4G 模式 EDR 模式下 17mA <25uA 平均,500ms 嗅探保持连接 2.4GHz 收发器 单端 RFIO BLE 模式下 -95dBm 支持 250kbps、1/2/3Mbps 数据速率 Tx 功率高达 +9dBm 音频功能 麦克风 PGA 0-18dB,每步 3dB 16 位 ADC 2x16 位 DAC,立体声 音频 SNR:ADC 88dB;DAC 92dB
Atmel ® ATmega328P 具有以下功能:32K 字节系统内可编程闪存(具有读写功能)、1K 字节 EEPROM、2K 字节 SRAM、23 条通用 I/O 线、32 个通用工作寄存器、三个灵活的定时器/计数器(具有比较模式)、内部和外部中断、串行可编程 USART、面向字节的 2 线串行接口、SPI 串行端口、6 通道 10 位 ADC(TQFP 和 QFN/MLF 封装中有 8 个通道)、带内部振荡器的可编程看门狗定时器以及五种软件可选的省电模式。空闲模式会停止 CPU,同时允许 SRAM、定时器/计数器、USART、2 线串行接口、SPI 端口和中断系统继续运行。断电模式会保存寄存器内容但冻结振荡器,禁用所有其他芯片功能,直到下一次中断或硬件复位。在省电模式下,异步定时器继续运行,允许用户在器件其余部分休眠时维持定时器基准。ADC 降噪模式会停止 CPU 和除异步定时器和 ADC 之外的所有 I/O 模块,以最大限度地减少 ADC 转换期间的开关噪声。在待机模式下,晶体/谐振器振荡器在器件其余部分休眠时运行。这可以实现非常快速的启动和低功耗。
标准性能 8200LN 提供 10 MHz 和 1PPS 输出以及 1PPS 输入,用于校准 GPS 接收器或其他主要标准。可选配置可以支持其他输出或自定义输出。配备可选低 g 灵敏度晶体时,8200LN 可以在各种振动曲线上保持低相位噪声性能。8200LN 是基于成熟的铷原子钟和 OCXO 技术设计的,该技术已在众多机载、舰载和地面战术平台中部署了三十多年。
摘要。精确的高精度磁场测量对许多应用来说都是一项重大挑战,包括研究空间等离子体的星座任务。仪器稳定性和正交性对于在不进行大量交叉校准的情况下对星座中不同卫星进行有意义的比较至关重要。这里我们描述了 Tesseract 的设计和特性 - 一种专为低噪声、高稳定性星座应用而设计的磁通门磁强计传感器。Tesseract 的设计利用了定制低噪声磁通门芯制造方面的最新发展。六个定制的赛道磁通门芯牢固而紧凑地安装在一个坚固的三轴对称基座内。 Tesseract 的反馈绕组配置为四方 Merritt 线圈,以在传感器内部创建一个大的均匀磁零点,其中磁通门磁芯保持在接近零的磁场中,而不管环境磁场如何,以提高磁芯磁化循环的可靠性。 Biot-Savart 模拟用于优化反馈 Merritt 线圈产生的磁场的均匀性,并通过实验验证其沿赛道磁芯轴线的均匀性在 0.42 % 以内。使用线圈系统内装满干冰的绝缘容器来测量传感器反馈绕组的热稳定性。发现反馈绕组的温度灵敏度在 13 到 17 ppm ◦ C − 1 之间。传感器的三个轴在 −45 至 20 ◦C 的温度范围内保持正交性,误差不超过 0.015 ◦。Tesseract 的核心在 1 Hz 时实现了 5 pT √ Hz −1 的磁本底噪声。Tesseract 将在 ACES-II 探空火箭上进行飞行演示,目前计划于 2022 年底发射,并将再次搭载在 TRACERS 卫星任务上,作为 MAGIC 技术演示的一部分,目前计划于 2023 年发射。
该提案描述了基于爱因斯坦De-Haas实验的布置。外部施加的磁场通过将微波功率频率降低到铁氧体芯周围的线圈,从而磁化了铁氧体芯。铁磁共振。核心在铁磁共振时达到负渗透性。由于负渗透性,铁氧体应对施加到铁氧体芯一端的DC电场引起的磁性。在某些情况下,负渗透性可能导致磁场的驱逐,导致B等于材料内部的B。这种诱发的现象与在超导体中观察到的Meissner效应有些类似。在负渗透性的情况下,负磁反应有效地将材料的内部屏蔽到外部磁场上。磁场的卷曲为零,导致移动电荷载体上等于零的净力。
近年来,人们对磁场对生物系统的影响的研究兴趣浓厚,尤其是与磁感应有关的研究——磁感应是生物体感知地球地磁场以进行导航的能力。目前,有三种公认的主要理论来解释这一有趣的现象。例如,一种假设认为,一些候鸟可能依靠喙中的微小磁性沉积物来定位。然而,由于缺乏确凿的证据,这一想法仍然是研究人员争论的话题。1 另一种有趣的理论认为,某些光敏蛋白(称为隐花色素)存在于选择性动物的眼睛中,可能充当地球磁场的化学探测器。这一想法近年来得到了广泛的关注,但与磁性沉积物假设一样,它也等待进一步的实验验证。磁感应的一个有趣的替代理论围绕磁趋化细菌 (MTB) 展开,这是一种沿着地磁场线定位的微生物。磁感应假说认为,这些与动物共生的细菌可能成为动物磁感应的潜在机制。”2,3 该理论提出,MTB 是长期存在的磁感应之谜的答案。