目前全球硅产量每年可产出 26,000 平方公里的太阳能电池板(7.5x 106 千克硅 ÷ 0.29 千克/平方米)。仅 PV-USA 的全面建成就需要全球硅年产量的近两倍。光伏项目对银的需求已降至最低,且没有已知的耐用替代品。每平方公里光伏电池板需用银 3.5 吨以上,PV-USA 需用银近 300 万吨,以目前全球每年 27,000 吨的产量计算,这笔钱足够用 100 多年。风力发电机所需的钕、绕组和输电基础设施所需的铜、塔架和桅杆所需的铁、涡轮叶片所需的轻木等等都是前所未有的。然后,如下所示,大量磨损的风力涡轮机叶片(使用寿命为 6-8 年)、光伏电池板、系统的每个组件都应该回收利用,但目前还没有任何规定。这些采矿、制造和回收成本未包含在 LCOE 估算中,但包含在 FCOE 中。可再生能源领域的早期领导者正在为不完整的分析付出代价。
随着连续可穿戴的生理监测系统在医疗保健方面变得更加普遍,因此对可以在长时间持续时间可持续能够可持续使用电源的无线传感器和电子设备的功率来源。使用热电发生器(TEG)收集可穿戴能量,其中人体加热转化为电能,这是一种有希望的方法来延长无线操作并解决电池寿命的问题。在这项工作中,引入了高性能TEG,将3D打印的弹性体与液态金属环氧聚合物复合材料和热电半导体相结合,以实现与人体的弹性合规性和机械兼容性。热电特性在能量收集(seebeck)和主动加热/冷却(毛皮)模式中都具有特征,并检查在各种条件下(例如坐着,步行和跑步)的可穿戴能量收获的性能。在户外行走时戴在用户的前臂上时,TEG阵列能够使用光子传感器收集光摄影学(PPG)波形数据,并使用板载蓝牙蓝牙低能(BLE)无线电器将数据无线传输到外部PC。这代表了在可持续磨损的智能电子产品的道路上向前迈出的重要一步。
摘要:哺乳动物端粒长度主要受端粒酶调控,端粒酶是一种由逆转录酶(TERT)和RNA亚基(TERC)组成的核糖核蛋白。TERC在所有细胞中均有组成性表达,而TERT表达则在时间和空间上受到调控,因此在大多数成年体细胞中,TERT处于失活状态,端粒酶活性无法检测到。大多数肿瘤细胞激活TERT作为阻止进行性端粒磨损的机制,以实现增殖永生。因此,失活TERT被认为是一种有前途的癌症治疗方法。在这里,我们应用CRISPR / Cas9基因编辑系统靶向癌细胞中的TERT基因。我们报告称,TERT的破坏严重损害了癌细胞在体外和体内的存活率。 TERT 在肿瘤细胞中的单倍体不足足以导致体外端粒磨损和生长迟缓。在体内,TERT 单倍体不足的肿瘤细胞在移植到裸鼠后未能形成异种移植物。我们的工作表明,基因编辑介导的 TERT 敲除是治疗癌症的潜在治疗选择。
摘要。如今,由于其在机械和热性能方面的许多优势,聚氨酯(PU)泡沫在许多应用中成功替换了各种工程材料。在各种应用中,必须根据用户要求将PU FOAM形成各种三维模型,通过使用CAM软件和CNC铣削加工来制造产品。因此,根据材料和切割工具的性质和特征,在铣削加工过程中选择切割参数是必不可少的,并且显着影响了产生的PU泡沫产品的几何结构和表面粗糙度。根据对本文的审查,必须适当考虑几个加工参数,包括主轴旋转速度,切割深度,切割工具选择和进料速度。振动将随着主轴旋转速度的增加而增加,这带来了切割工具,但会带来更好的表面质量。可以通过选择适当的切割深度并产生低表面粗糙度值来实现连续的芯片形成。选择与材料特征相匹配的合适切割工具和几何形状可以减少加工过程中物质损害的风险,从而降低表面粗糙度值。最后,较低的切割率将使表面粗糙度最小化,但会增加尖端磨损的风险。
摘要:聚合物通常与绝缘子有关,世界上每个人都在学习不触摸磨损的电线,您可能会从暴露的导电金属线中受到冲击。我们都知道塑料不会导致电力,并且可以用来隔离电线并保护我们免受电流的侵害。我们大多数人都认为聚合物(塑料)可作为较重的结构材料(例如钢和木材)的轻重替换。传统上,它们被用作绝缘子,以防止电气导体产生电击。通常与绝缘子相关的聚合物可能是一个非常好的导体,这是一个非常出乎意料的发现,即可以使某些聚合物像金属铜一样有效地进行电流,这对许多人来说是一个惊喜,并获得了2000年诺贝尔化学奖。(该奖项授予Alan J. Heeger,Alan G. MacDiarmid和Hideki Shirakawa。)他们总是需要与离子成分的一些“求职”;但是,电阻率可能极低。聚合物等聚合物的可用性和低成本使导电聚合物的领域成为繁荣的行业。导电聚合物已进入许多其他字段索引项 - 聚合物,电导率,电阻率,掺杂,聚乙烯,聚苯胺。
自上一封时事通讯以来,我们的部门已经看到了一些人员变更。我们欢迎一名两年的访客Alberto Arredondo-Chavez,这是2020年秋天的密歇根大学新近铸造的宏观经济学博士。Alberto在我们的课程中添加了一些必要的宏观经济学课程,包括货币和银行业务,这是一个流行的选修课。我们中的许多人仍然没有亲自见过他,但是我们希望我们能在当前的所有人今年秋天回到校园教学的计划很快(手指交叉)。我们还欢迎今年秋天为期两年的访客。迈克尔·勒沃(Michael Levere)来自Mathematica,是一名劳动和健康经济学家,他将为自己的课程带来政策观点。我们在春季学期结束时有个好消息。Carola Binder和Giri Parameswaran都被授予任期。尽管我们都认为这些是扣篮决定,但直到我们听到政府的好消息,总是有很多磨损的神经。恭喜Carola和Giri!我们希望他们将在未来很多年成为Haverford的教师。
发掘过程中的抽象堵塞是机械挖掘中的常见问题之一。在切割器头部堵塞的影响因素中,我们可以提到细土颗粒(200个网状筛),土壤水分和土壤类型的百分比。在这项研究中,为了研究实验室中的隧道发掘机制,设计和构建了隧道开挖机实验室模拟器。该设备的特征是其水平操作,切割机头的低旋转速度,测试过程中销与新鲜土壤的连续接触,以及在测试过程中连续的添加剂与特定的注入压力。研究了研究细粒度,土壤含量和泡沫注入比(FIR)对堵塞,消耗能量以及切割工具的平均磨损的影响。结果表明,随着细土颗粒百分比从90%增加到100%,切割工具的堵塞增加了50%。同样,随着土壤水分从干燥状态增加到5%的水分含量,切割机头的堵塞是微不足道的,此后,随之而来的是,水分从10%增加到25%,堵塞量增加了178%,每次测试中消耗的能量量增加了84%。此外,通过将泡沫注入比从40%增加到60%,平均堵塞减少了81%,而切割工具的磨损平均降低了62%。
摘要 — 在本研究中,为了阐明磨损机理和碳转移层对磨损的作用,对ta-C涂层在空气中以不同的滑动循环在200 o C下进行摩擦试验。在完成约2,000次磨合循环后,获得0.02的稳定状态摩擦系数。在稳定状态下,ta-C的磨损率随着循环次数的增加而降低。磨损率的这种下降被解释为在磨合过程中在配合材料上形成了碳转移层。通过拉曼光谱和非接触式显微镜分析了这些摩擦学特性的机理。1.介绍 类金刚石碳(DLC)涂层是sp 2和sp 3键合碳原子的混合结构。DLC 涂层因其高硬度、高电阻率和低摩擦系数而备受关注。这些特性有望广泛应用于干加工、发动机部件和切削刀具的耐磨涂层等。然而,DLC 涂层的这些摩擦学性能在高温下会迅速恶化,并在接触过程中产生摩擦热 [1]。在 DLC 系列中,非氢化四面体无定形碳 (ta-C) 是摩擦学应用的理想候选材料,因为其结构中具有较高的 sp 3 键,具有良好的热性能。
本报告总结了普渡大学工程与科学学院在为期四年的 AFOSR 大学研究计划期间进行的研究,该计划重点关注处理老化飞机的基本问题。该计划的协调目标分为四个主要类别:损伤发展、裂纹扩展和相互作用预测、故障预防技术和高级分析方法。损伤发展目标解决了腐蚀、疲劳裂纹形成 MI 和微动磨损的失效机制。裂纹扩展和相互作用任务的总体目标是开发预测服务引起的裂纹扩展的技术,并确定大面积开裂对损伤容限的影响。故障预防项目的主题是制定程序,通过延迟服务引起的损坏、修复有裂纹的结构以及采用机队跟踪方法对机队内的维护行动进行优先排序,从而延长“老旧”飞机的使用寿命。最后,研究旨在开发其他研究任务中使用的“高级”分析方法。这些项目涉及在各种材料评估和结构分析中添加统计成分,并制定与飞机材料和结构相关的延性断裂标准。
面具和呼吸器在对医护人员和公众对Covid-19的大流行的反应中发挥了至关重要的作用。但是,医护人员和公众都需要依靠很多东西的面具和呼吸器。尽管在舒适性和合身方面存在缺点,但自1990年代中期以来,绝大多数医疗工作者使用的无处不在的一次性面具和一次性N95呼吸器就无法明显改善。在19日期大流行期间,建议公众也戴口罩。面罩一直是“源控制”的有效手段(即,将呼吸液滴从佩戴者降低到其他人)。最近有证据表明,正确构造和磨损的口罩以及呼吸器对佩戴者的保护程度也有限,但也不是无关紧要的保护程度。现有的口罩和呼吸器在有效性和耐磨性方面运行范围。在未来的大规模爆发或大流行中,有可能通过更高效,更合适且舒适的口罩来增加医疗人员和公众免受感染的保护。通过利用新兴技术,自共同研究早期以来的创新研究与发展精神来实现更好的面具和呼吸器的设计和制造,以及支持技术创新的资源的可用性。