b'lithium-o 2(li o 2)细胞是一类引人入胜的LI金属空气电池,具有最高的理论特异性能密度(3500 WHKG 1)。[1]尽管如此,直到他们的商业化成为现实,仍然需要漫长的旅程。从物质的角度来看,已经在开发更有效的电解质方面做出了许多努力,这些电解质符合广泛的属性,例如高离子电导率或更环保的电解质。[2]从这个意义上讲,由于良好的运输特性,非挥发性,低毒性的结合,离子液体(ILS)似乎是常规易燃有机溶剂的一个很好的替代品(请注意,需要仔细分析此特性),[3] [3]非耐受性和对超氧自由基的稳定性。[4,5]李O 2电池中研究最多的离子液体是基于咪唑 - 和吡咯烷菌的[4,6 \ xe2 \ x80 \ x939]和基于氟的牛灰(即bis(trifluororomethananesulfonyllfonyl)Imiide,tffone)。[10]最近,较少使用的四烷基铵基于ILS,例如N,N,N-二乙基-N-甲基-N-(2-甲氧亚乙基)BIS(三氟甲磺酰硫磺酰基)imide([Deme] [Deme] [deme] [tfsi]),已显示出适用于这种类型的彩色彩色彩色的物体。'
目的:三磷酸腺苷敏感钾通道开放剂二氮氧化物可模拟缺血性预处理并具有心脏保护作用。明确二氮氧化物的作用位点和作用机制可为接受心脏手术的患者提供有针对性的药物治疗。几种线粒体候选蛋白已被研究作为潜在的三磷酸腺苷敏感钾通道成分。肾外髓质钾 (Kir1.1) 和磺酰脲类敏感调节亚基 1 被认为是线粒体三磷酸腺苷敏感钾通道的亚基。我们假设,在伴有心脏停搏液的全身缺血模型中,药物阻断或基因缺失 (敲除) 肾外髓质钾和敏感调节亚基 1 将导致二氮氧化物失去心脏保护作用。
数字量子计算机是模拟多体量子系统的替代框架。23 - 26假设有足够数量的高质量量子位,它们允许以多项式成本仅引入可控近似值的时间依赖性的schrö-dinger方程,27,28,因此能够访问大量的激发属性。硬件制造业的最新进展已经生产了量子计算机,这些计算机可以以有限的规模进行计算。尽管量子硬件的发展迅速,但现代量子组合平台还是不成熟的。因此,近期设备上激发态的模拟通常仅限于启发式量子子空间算法,29 - 35,通过将Schrödinger方程投影到适当结构的子空间中,从而在这些设备预算中产生了激发态波形和属性。因此,目前是一种真正的可能性,并且至关重要,以评估近期量子设备在概念和实际兴趣问题上的潜在有用性,例如分子激发态的计算。在这里,我们报告了一种启发式方法的发展,该方法利用了许多电子波函数中的结构化纠缠来计算地面和激发态分子特性,并在超导量子处理器上进行了实验演示。更具体地说,我们将一种称为纠缠锻造的量子降低技术(EF)概括为36最初提出了用于基层能量的变异模拟的,以计算通用多种体内可观察物的计算。在常规量子模拟中,量子量子代表一个旋转轨道,在量子量表内代表空间轨道,将所需量子的数量减少了一半。提高了该技术的准确性,并为近似激发态的能量和属性,我们将EF与量子空间扩展(QSE)相结合,这是启发式量子量子空间算法29,35,37的一个示例,该算法是最简单的形式,该算法是最简单的形式,将Schrödinger方程的单次划分和双重发挥作用。所提出的方法扩展了EF的适用性,允许计算一组观测值集,以及QSE的计算,从而促进了由于EF运行的量子降低而在当代量子硬件上的演示。
除草剂处理率(g ai ha -1 ) 未处理 --- 吡啶酸 350 甲基磺草酮 53 磺草酮 46 或 92 吡啶酸 + 甲基磺草酮 350 + 53 吡啶酸 + 磺草酮 350 + 46 或 92 *所有处理均含有 1% v/v 的 COC 和 AMS
对从自然界借用这种聪明的认可范式的潜力感兴趣,以解决立体选择性的综合挑战性主题。在本说明中,我们报告了在基态下参与推定的C -H··N/π相互作用的类固醇夹管。然而,一组互补的C - H··O氢键决定了在过渡态中与选择液的反应的高度非映选择性且显然是对比型磺酰基的氟化。我们开始使用脱氢表雄酮(DHEA)研究,这是一种必不可少的人类类固醇,也以prasterone的名称在药品上使用。5我们认为,DHEA对药物相关的ENONE 6的氧化将提供合适的手柄,以使类固醇骨骼的功能降低具有芳族部分,具有适当的方向,可以将分子内部堆叠在类固醇的α-或β-面上。7因此,根据我们先前发布的协议进行了DHEA二乙烯酮衍生物的简洁合成,其次是8,然后是
作为1,2,4-苯甲二嗪-1,1-二氧化物的衍生物,噻嗪类药物更准确地分类为苯甲二氮嗪。在不同化合物之间存在取代和杂环环的变化,但它们都共享一个未取代的磺酰胺基,类似于碳酸酐酶抑制剂。尽管它们保留了抑制碳酸酐酶的能力,但其利尿作用并不仅仅依赖于这种活性。在生理pH时,噻嗪类充当有机阴离子,由于其高蛋白结合和有限的肾小球过滤,因此必须通过肾脏有机阴离子转运蛋白通过肾脏有机阴离子转运蛋白进行主动分泌。尿酸与噻嗪类药物竞争为近端小管的分泌,可能导致高尿酸血症并引发易感个体的痛风。
疟原虫引起的感染给世界上最贫穷的社区带来了巨大的负担。我们迫切需要具有新作用机制的突破性药物。作为一种经历快速生长和分裂的生物体,疟原虫恶性疟原虫高度依赖蛋白质合成,而蛋白质合成又需要氨酰基-tRNA 合成酶 (aaRS) 为 tRNA 充电相应的氨基酸。蛋白质翻译是寄生虫生命周期所有阶段所必需的;因此,aaRS 抑制剂具有全生命周期抗疟活性的潜力。本综述重点介绍了使用表型筛选、靶标验证和结构引导药物设计来识别有效的疟原虫特异性 aaRS 抑制剂的努力。最近的研究表明,aaRS 是一类 AMP 模拟核苷磺酰胺的易感靶标,这些靶标通过一种新颖的反应劫持机制靶向酶。这一发现开辟了生成不同 aaRS 的定制抑制剂的可能性,从而提供了新的药物线索。
酰基辅酶-A结合蛋白(ACBP),也称为地西epam结合抑制剂(DBI),是食欲和脂肪生成的有效刺激剂。生物信息学分析与系统筛选结合表明,过氧化物酶体增殖物激活的受体伽马(PPARγ)是转录因子,最能解释了包括肝脏和脂肪组织在内的代谢活性器官中的ACBP/DBI上调。PPARγ激动剂罗格列酮诱导的ACBP / DBI上调以及体重增加,这可以通过小鼠中的ACBP / DBI敲除。此外,PPARG的肝脏特异性敲低阻止了高脂饮食(HFD)诱导的循环ACBP/DBI水平上调,体重增加降低。相反,ACBP / DBI的敲除阻止了HFD诱导的PPARγ上调。Notably, a single amino acid substitution (F77I) in the γ 2 subunit of gamma-aminobutyric acid A receptor (GABA A R), which abolishes ACBP/DBI binding to this receptor, prevented the HFD-induced weight gain, as well as the HFD- induced upregulation of ACBP/DBI, GABA A R γ 2, and PPAR γ .基于这些结果,我们假设依靠ACBP/DBI,GABA A R和PPARγ的肥胖前馈环的存在。在任何水平上的中断,都无法区分地减轻HFD诱导的体重增加,肝脏toposisos和高血糖。
修复DNA损伤对于所有生物体来说都是至关重要的。DNA双链断裂(DSB)是最严重的DNA损伤类型之一,因为它们导致丧失了网络信息和未修复时死亡。在大肠杆菌中,它们被RECBCD复合物认识和处理,该复合物通过同源重组启动修复。尽管RECBCD下游的重复动力学已得到很好的特征,但尚不清楚该复合物与DNA保持附着多长时间,以及什么触发了其在体内的分离。要回答这些问题,我们在单分子水平上成像了RECB,并量化了其在暴露于环丙沙星的细菌细胞中的动态行为,这是一种诱导DSB的抗生素。我们的结果表明,RECB与DSB(10秒)形成长寿命的复合物,并且其与DNA的解离是复合物的固有证券,不取决于DNA损伤的量,也不取决于修复途径中的以下步骤。更重要的是,我们表明我们可以使用与DSB的RECB结合作为估计损害形成速率的标记。这项研究对RECBCD与DNA双链在体内的大肠杆菌的相互作用以及对环丙沙星诱导的DSB的细菌反应提供了详细的定量见解。
转移RNA动力学通过调节密码子特异性信使RNA翻译有助于癌症的发展。特定的氨基酰基-TRNA合成酶可以促进或抑制肿瘤发生。在这里我们表明valine氨基酰基-TRNA合成酶(VARS)是密码子偏置翻译重编程的关键参与者,该重编程是由于对靶向(MAPK)疗法在黑色素瘤中的抗性(MAPK)。患者衍生的MAPK治疗耐药性黑色素瘤中的蛋白质组会重新布线,偏向于valine的使用,并且与valine cognate trnas的上调以及VARS的表达和活性相吻合。引人注目的是,VAR敲低重新敏感了MAPK-耐药的患者衍生的黑色素瘤体外和体内。从机械上讲,VARS调节了富含Valine的转录本的使者RNA翻译,其中羟基酰基-COA脱氢酶mRNA编码用于脂肪酸氧化中的关键酶。耐药性黑色素瘤培养物依赖于脂肪酸氧化和羟基乙酰-COA脱氢酶在MAPK治疗后的生存。一起,我们的数据表明,VAR可能代表了治疗耐药性黑色素瘤的有吸引力的治疗靶点。