•确认在认证申请中报告的信息,验证旅行计划信息和通往办公室和设施的指示,•确认您访问联合委员会连接extranet网站以及可用的与认证相关的信息(现场访问议程,认证审核过程指南等。),然后•回答任何组织的问题并解决任何问题。物流•在现场,审阅者将在访问期间需要工作空间。桌子或桌子,电话,互联网连接以及对电源插座的访问是可取的。•一些审核活动将需要一个可以容纳一群参与者的房间或区域。小组活动参与者应在可能的情况下受到限制,以提供有关讨论主题的洞察力的关键个人。参与者的选择留给了组织的酌处权;但是,本指南确实提供了建议。•审阅者希望在示踪活动期间遍及整个设施或办公室,与员工交谈并观察组织的日常运营。审稿人将依靠组织工作人员找到可以进行讨论的地点,从而可以维护机密性和隐私,这将最大程度地减少对所访问区域的中断。
* 通讯作者:daw@clemson.edu 关键词:高熵合金 (HEA);成分复杂合金 (CCA);多组分合金;多主元素合金;等摩尔;FCC;缓慢扩散;空位迁移率;自扩散;示踪扩散;嵌入原子方法 (EAM) 摘要:我们基于 Foiles、Baskes 和 Daw(Foiles、Baskes 和 Daw Phys Rev B 1986)久经考验的嵌入原子方法功能,研究了由 Cu、Ag、Au、Ni、Pd 和 Pt 形成的 57 种随机等摩尔合金中的空位辅助扩散。我们回应了 W. Yeh 等人的建议,Advanced Engineering Materials,2004 年),即增加成分数量会导致随机等摩尔合金中的扩散“缓慢”。使用分子动力学 (MD) 模拟具有单个空位的随机合金,结合空位形成的计算,我们提取了每种合金中空位辅助扩散率。在开发和应用了几种可能的“迟缓性”评估标准后,我们发现只有少数合金(从 1 到 8,取决于迟缓性的定义)表现出迟缓扩散,而绝大多数合金的扩散速度更快,在相当多的情况下应该被认为是剧烈的(即比任何成分都快)。我们将扩散率与
在北极的快速变暖有可能以甲烷(CH 4)释放大量的碳储存量,从而产生强烈的积极气候反馈。这引起了人们的关注,即在1999年至2006年的大气CH 4负担近零增长之后,此后的增加可能部分与北极排放量增加有关。在背景空气样品中的CH 4的测量提供了有用的直接信息,以确定北极CH 4排放量是否在增加。对大发射变化的一个敏感的一阶指标是极性差异,即极地北部和南部区域(53° - 90°)之间的表面大气年平均值的差异,该平均数跨间隔,但在1992年至2019年没有增加。在2020年至2022年,当全球CH 4负担显着增加,但在1980年代后期的峰值尚未达到峰值时,极性差异已适度增加。为了定量评估北极CH 4排放的定量评估,必须将大气测量与大气示踪模型相结合。基于多项研究,包括一些使用CH 4同位素,很明显,全球大气CH 4负担的大部分增加是由热带地区微生物来源的排放增加所驱动的,自从1983年至2022年我们测量记录开始以来,北极排放并没有明显增加。
摘要:3DNA 有望成为一种药物载体,药物可插入其核心或连接到表面臂。将 3DNA 与靶向细胞间粘附分子 1 (ICAM-1) 的抗体偶联可导致体内肺特异性生物分布高。虽然已经研究了其他纳米载体中各个参数对 ICAM-1 靶向性的作用,但从未对 3DNA 进行过研究,也从未以能够揭示所述参数之间层次相互作用的方式进行过研究。在本研究中,我们使用 2 层和 4 层抗 ICAM 3DNA 和放射性示踪来检查小鼠的生物分布。我们发现,在饱和条件下和测试范围内,与每个载体上的抗体数量、总抗体剂量、3DNA 剂量、3DNA 大小或给药浓度相比,3DNA 上靶向抗体的密度是驱动肺靶向而非肝清除的最相关参数,这些参数影响器官中的剂量,但不影响肺特异性与肝清除率之比。数据预测,可以使用这种生物分布模式调整插入(核心负载)药物的肺特异性递送,而臂连接(表面负载)药物的递送需要仔细的参数平衡,因为增加抗 ICAM 密度会减少可用于药物负载的 3DNA 臂的数量。
多年来,惰性荧光染料罗丹明水示踪剂 (RWT) 一直广泛应用于淡水水生系统中,以量化大量水交换模式和作为水下除草剂运动的示踪剂。这种染料在水中溶解度高且可检测性强 (<0.01 μg/L),非常适合用于示踪工作。联邦指导方针将饮用水入口处的 RWT 水溶液浓度限制为 <10 μg/L。事实证明,低浓度的这种染料对水生生物和人类无害,而且价格相对便宜。自 1991 年以来,工程师研究与发展中心 (ERDC) 的研究人员一直使用 RWT 来模拟 12 个以上州的大型水动力系统中的水性除草剂应用。此类模拟通过将原位水交换过程与适当的除草剂选择和施用率联系起来,提高了除草剂处理的有效性。了解这些参数对于减少环境敏感环境以及饮用水和灌溉取水口周围的除草剂暴露至关重要。基于数据的水交换模式估计通常可以成功实现水下除草剂应用——既对目标植物有效,又对非目标植物的伤害有限。使用 RWT 染料模拟水下除草剂应用是实验和操作环境中重要的预测和实时工具。
非平衡浴中示踪物扩散的一般问题在从细胞水平到地理长度尺度的广泛系统中都很重要。在本文中,我们重新讨论了这种系统的典型示例:一组小的被动颗粒浸没在无相互作用的偶极微游泳体的稀悬浮液中,这些微游泳体代表细菌或藻类。特别是,我们考虑了由于微游泳体流场对示踪物的持续平流而导致的热(布朗)扩散和流体动力学(主动)扩散之间的相互作用。以前,有人认为,即使是适量的布朗扩散也足以显著减少示踪物平流的持续时间,从而导致有效主动扩散系数 DA 的值与非布朗情况相比显著降低。在这里,我们通过大规模模拟和动力学理论表明,这种影响实际上只对那些实际上保持静止但仍搅动周围流体的微型游泳器(即所谓的振动器)具有实际意义。相比之下,对于生物微型游泳器悬浮液中相关的中等和高游泳速度值,布朗运动对 DA 的影响可以忽略不计,导致微型游泳器的平流和布朗运动的影响具有累加性。这一结论与文献中的先前结果形成对比,并鼓励重新解释最近对细菌悬浮液中不同大小的示踪颗粒的 DA 的实验测量。
2000 年,人们在核静止质量数据中发现了中子排斥力,它是一种被忽视的核能来源,将过去 40 年许多令人费解的太空时代观测结果联系在一起,就像拱门上的拱顶石将拼图的其他部分锁在一起一样。太空、气候和核科学界的成员忽视了中子排斥力,就像他们忽视了之前三个关于地球热源的关键发现一样,这三个发现可能避免了最近有关地球气候的所谓科学预测的丑闻:a.) 太阳在超新星爆炸中诞生了太阳系,然后在坍缩的超新星核心上重新形成(图 1);b.) 在太阳系诞生时,r 过程中产生的过量 136 Xe 是陨石和行星中原始氦的示踪同位素(图 2);c.) 太阳中的质量分馏(图 3)富集了太阳表面的轻元素和每种元素的轻同位素。以上四项发现共同构成了解释以下原因的框架:1.)能量和中微子不断从富含铁的太阳和类似恒星中涌出;2.)像太阳这样一颗普通的恒星形成于前身恒星富含中子的核心;3.)太阳中中子衰变产生的太阳氢在前往富含氢的表面之前,在前往星际空间的途中,通过聚变产生太阳中微子;4.)随着中子排斥力克服引力吸引力,宇宙碎裂并膨胀,产生剧烈的恒星爆炸或稳定的中子发射,并衰变为氢,最终作为废物离开恒星。
由于斯托克斯方程[1,2]的运动学可逆性,最令人信服的例证是 G.I.泰勒的库埃特细胞实验[3,4],低雷诺数下的流体混合需要平流(搅拌)和扩散[5,6]的相互作用。剪切引起的扩散混合增强,也称为泰勒扩散[7],是许多生物和人工系统的基础,从纤毛水生微生物对氧气、营养物质或化学信号的吸收,到微反应器和“芯片实验室”应用[8-12]。事实上,它代表了任何由平流扩散方程控制的非平衡松弛过程的基本特征[5],包括对流层上部和平流层的污染物扩散[13]。因此,设计最优混合方案是一个既具有基础性又具有实际意义的问题[14-17],并且与人们对将最优控制理论概念应用于非平衡物理[18-25]日益增长的兴趣相一致。传统上,全局混合效率通过施加一个初始模式(如溶质分布或温度分布)并通过其 L 2 /Sobolev 范数[26, 27]或 Shannon 熵的变化来表征搅拌对后者的影响[14, 28, 29]。局部混合也可以用 Lyapunov 指数来量化[2, 30]。最近,以混合前后粒子位置之间的互信息的形式引入了一种通用的无假设(即与模式无关)的全局混合效率度量[15]。在实验中,可以使用无损压缩算法从示踪数据中估计互信息 [ 31 ]。在这里,我们将这一新度量应用于无散度线性剪切流混合流体的问题。将时间相关的剪切速率定义为我们的协议,我们将互信息重新表示为后者的非线性函数,并精确求解最优控制问题,以在总剪切和总粘性耗散的约束下得出最优协议
BWI Eagle Inc. 保证,如果正确使用和安装,Air-Eagle 遥控系统在购买之日起 1 年内不会出现材料和工艺缺陷。上述保证包括有缺陷设备的维修或更换。本保证不涵盖因外部原因造成的损坏,包括事故、电力问题、未按照产品说明使用、误用、疏忽、改装、维修、安装不当或测试不当。本有限保证以及州法律可能存在的任何默示保证仅适用于设备的原始购买者,并且仅在该购买者继续拥有设备期间有效。本保证取代所有其他明示或默示保证,包括但不限于适销性和特定用途适用性的默示保证。BWI Eagle 不提供除此处所述以外的任何明示保证。BWI 不承担任何有关适销性和特定用途适用性的默示保证。某些司法管辖区不允许排除默示保证,因此此限制可能不适用于您。要获得保修服务,请联系 BWI Eagle 获取退货材料授权。将设备退回 BWI Eagle 时,客户承担运输过程中损坏或丢失的风险,并负责产生的运输费用。