纳米医学是利用纳米技术开发医疗诊断和治疗解决方案的科学领域。该领域出现于 20 世纪 80 年代的文献中,当时发表了第一篇涉及纳米医学应用的论文 ( 1 , 2 )。第二个重要里程碑是 20 世纪 90 年代推出前两种药物纳米医学产品 Doxil ® 和 Myocet ®,它们是携带化疗药物的脂质体。这些肿瘤学应用对于降低化疗毒性和提高疗效非常重要,从而改善了成千上万人的生活质量 ( 3 )。此外,纳米医学近期最相关的应用是 COVID mRNA 疫苗的开发,其中涉及使用脂质纳米颗粒(图 1 )。由于 RNA 序列不稳定,使用脂质纳米颗粒是保持寡核苷酸完整性的关键步骤。如果没有这些脂质纳米颗粒所提供的保护和稳定性,就不可能使用这些疫苗 (4)。事实上,由于此次疫情的重要性,并且这些疫苗已应用于数十亿人,我们可以说这是迄今为止纳米医学最具影响力的用途。此外,这些技术有可能用作其他医疗条件(如癌症和自身免疫性疾病)的新治疗平台,因为它们的其他用途正在不断研究中 (5,6)。在这样的历史背景下,我们向《肿瘤学前沿》提出了这个研究课题,旨在邀请作者发表纳米医学领域最新的科学和技术进展。近两年后,我们收到了 25 篇文章投稿,其中 10 篇被接受并收录在我们的特刊“纳米医学在癌症靶向和治疗中的应用”中。五篇原创文章、六篇评论文章和一篇系统评论文章被选中发表。在原创文章中,有一篇描述了用于封装藤黄酸的聚合物纳米颗粒,藤黄酸是一种常用于中药的植物化学化合物。作为主要结果,Kwan 等人展示了这种纳米载体对三阴性乳腺癌细胞的有效性,包括
1 中国医科大学健康科学研究所帕金森病及相关疾病研究实验室,中国沈阳,2 海南大学生物医学工程学院海南省生物医学工程重点实验室,中国海口,3 法国雷恩大学法国国家科学研究院上皮细胞动力学与力学系,雷恩遗传与发育研究所 (IGDR),法国雷恩,4 军事医学研究所 (WIM-PIB) 分子肿瘤学与创新疗法实验室,波兰华沙,5 中国农业大学生物科学学院动物生物技术育种国家重点实验室,中国北京,6 中国农业大学三亚研究所,中国三亚,7 东北大学生命与健康科学学院辽宁省生物资源研究与开发重点实验室,中国沈阳
《可持续智能基础设施》的创刊号介绍了该期刊的使命,即通过将可持续发展原则与先进技术相结合,应对城市化、气候变化和资源枯竭等全球挑战。该期刊旨在为高质量研究提供一个多学科平台,探索智能技术、人工智能、机器学习和数据分析在可持续基础设施中的协同作用。该期刊立志成为全球话语的领军人物,弥合传统基础设施与智能系统之间的差距,同时推动创新以实现联合国的可持续发展目标。该期刊的创刊号强调了人工智能驱动的决策、气候适应型基础设施和可再生能源整合等当前趋势,承认了该领域的机遇和挑战,包括数据标准化和道德考量。创刊号刊登了体现该期刊愿景的开创性研究,邀请全球合作,为基础设施发展塑造一个更智能、更可持续、更具弹性的未来。
本研究主题的目的是收集与生物装饰发展有关的高质量贡献,既涉及其全球概念又是构成整个设施的运营。在发表的论文中,我们可以从环境化学工程学的角度找到有关不同问题的原始研究论文,评论和观点论文。在循环生物经济的整体框架中,这一概念解决了关键的全球挑战,包括气候变化和资源耗竭,与联合国的可持续发展目标保持一致(Mesa等,2024),生物九群人发挥了重要作用。在2000年代初期,它发生了从管制终止废物处理技术(例如土地填充或焚化)到生物处理的第一次过渡,目的是将其从废物中恢复为可再生能源(从厌氧消化中的沼气)和新材料(新材料)和新材料(再生产品和成分)。如今,废物处理厂正在朝着复杂的设施(称为生物填充物)转向,可以使用原始的有机废物作为原料,从而代替化石燃料和不可再生的材料,从而提供广泛的生物产品和生物能源。生物矿的当前和未来开发涉及以协同的方式使用新技术和现有技术,以最大程度地生产生物能源和生物产品。良好合并的过程(例如厌氧消化)与有机废物的新兴生物技术作为固态发酵的相互作用和密切关系是发表的一篇论文的主要主题:Artola等人。这项研究探讨了技术的组合,这是生物填充概念的基本面。同样,这是研究主题的另一篇原始论文:Bühlmann等。通过强调为实施生物生物的实施而发现的两个主要挑战:经济生存能力和某些某些生物产品的下游难以销售的主要挑战,探讨了厌氧消化与乳酸发酵之间的整合。到目前为止,这些是该主题进步并使其商业实施吸引人的主要障碍(Calvo-Flores和Martin-Martinez,2022年)。在生物燃料领域,另一篇原始纸(Whistance等人)强调拥有实现某些可持续发展目标的本地可再生能源的重要性。从这个意义上讲,厌氧消化的提升与这种趋势完全一致(Kusch-Brandt等,2023)。
非传染性疾病(NCD),包括心血管疾病,癌症,糖尿病和慢性呼吸道疾病,已成为一项重要的全球健康挑战,对全球医疗保健系统和经济体施加了巨大压力。根据世界卫生组织(WHO),全球非传染性疾病(NCD)每年占4100万人死亡,占全球死亡率的74%(1)。NCD对被残疾调整的寿命(DALY)的贡献是全球最高的,并且是Dalys唯一的Dalys从2010年的14.7亿增加到2021年的17.3亿年(2)。NCD的多方面病因强调了解决潜在危险因素并量化其对关键风险因素的影响的全面方法的必要条件,这对于公共卫生政策和实践提供了依据是必要的,并有助于优先使用稀缺资源来减少现有差异(3)。根据谁,NCD是由行为,代谢和环境风险因素的结合而产生的。可修改的行为,例如烟草的使用,身体不活跃,不健康的饮食和有害的饮酒量显着提高了NCD风险(1)。代谢危险因素,包括高血压,肥胖,血糖升高和血液脂质,驱动NCD发育。空气污染等环境因素进一步加剧了NCD的风险,在全球造成670万人死亡,其中570万种与中风,心脏病,慢性阻塞性肺部疾病和肺癌等疾病有关(1)。虽然大多数风险因素被认为是可修改的,但最小化它们的效果是糟糕的
癌症免疫力是指免疫系统识别和消除体内癌细胞的强大能力。这种复杂的防御机制涉及各种类型的免疫细胞,包括 T 细胞和自然杀伤细胞。这些细胞共同作用,识别可能导致肿瘤形成的异常细胞,从而保护身体免受癌症进展。通过有效区分健康细胞和有害细胞,免疫系统在维持整体健康和防止癌症扩散方面发挥着至关重要的作用 ( 1 )。这一过程至关重要,因为癌细胞可以从正常细胞发展而来,并可能找到逃避免疫反应的方法。了解和增强癌症免疫力对于癌症研究和治疗至关重要,因为这些努力可以带来更有效的治疗方法和更好的患者结果。免疫疗法正逐渐被认可为治疗各种类型癌症的重要方法。这种方法包括创新技术,例如免疫检查点抑制剂和 CAR-T 细胞疗法,它们使人体免疫系统能够更有效地对抗癌症。然而,一个关键挑战是优化这些治疗方法以适应更广泛的患者和各种肿瘤类型 ( 2 )。研究人员强调肿瘤微环境——癌性肿瘤周围的区域,可影响治疗效果。该环境的一个关键组成部分是腺苷信号传导。肿瘤可以操纵该通路来欺骗免疫系统,阻止其发起攻击。因此,针对腺苷信号传导有望改善癌症治疗( 3 , 4 )。
创伤性脑损伤(TBI)仍然是一个关键的公共卫生问题。尽管急性护理和创伤管理方面的进步提高了生存率,但长期影响,包括神经变性和认知能力下降,构成了重大挑战(Liu等人。)。TBI启动了一系列的病理过程,这些过程超越了主要伤害,从而导致渐进式和持久的损害。继发性损伤,例如炎症,氧化应激和兴奋性毒性,是神经变性的中心驱动因素,可能导致慢性创伤性脑病(CTE),阿尔茨海默氏病和其他神经变性疾病。越来越多的证据也强调了由反复轻度TBI(MTBI)造成的累积损害,强调了迫切需要更高的认识和针对性的研究以解决其长期后果(Liu等人。)。TBI之后的遗传文献的原因是复杂且多因素,涉及直接神经元损伤,脑功能网络的破坏和全身因素。TBI的异质性(损伤机制,严重程度和个体差异的变化)进一步使研究和临床管理复杂化。这强调了对诊断,治疗和结果评估中标准化方案的迫切需求。此外,神经退行性的渐进性需要长期跟进,这在临床实践和研究环境中仍然具有挑战性。最近的进步显着增强了我们对与TBI相关的神经变性和认知障碍的理解。取得的关键领域包括神经蛋白浮动,TAU蛋白质病理学,通过颅内淋巴系统的废物清除机制以及用于检测神经退行性变化的高级神经成像技术。这些发现不仅确定了基本机制,而且还确定了有希望的治疗靶标,为将来的研究铺平了道路。该研究主题通过强调与TBI相关的神经变性的诊断,治疗和预防方面的最新发展来解决这些关键挑战,同时为其基本机制提供了新的见解。
1 内科 I – 心脏病学,Uniklinik RWTH Aachen,亚琛工业大学,亚琛,德国,2 分子心血管研究所 (IMCAR),Uniklinik RWTH Aachen,亚琛工业大学,亚琛,德国,3 亚琛-马斯特里赫特心肾病研究所 (AMICARE),Uniklinik RWTH 亚琛,RWTH亚琛大学,亚琛,德国,4 心血管预防研究所 (IPEK),路德维希马克西米利安大学,慕尼黑,德国,5 实验血管医学系,阿姆斯特丹心血管科学,阿姆斯特丹 UMC 地点 阿姆斯特丹大学,阿姆斯特丹,荷兰,6 阿姆斯特丹心血管科学,动脉粥样硬化和缺血综合征,阿姆斯特丹,荷兰,7 血管生成和血管代谢实验室,VIB-KU鲁汶癌症生物学中心,鲁汶比利时, 8 比利时鲁汶天主教大学和鲁汶癌症研究所 (LKI) 肿瘤学系血管生成和血管代谢实验室,9 西班牙巴达洛纳德国 Trias i Pujol 研究所 (IGTP) 呼吸系统疾病肺免疫转化研究组,10 德国慕尼黑心血管研究中心 (DZHK),慕尼黑心脏联盟合作站点,11 瑞士伯尔尼大学伯尔尼大学医院血管学部瑞士心血管中心,12 瑞士伯尔尼大学伯尔尼大学医院生物医学研究部 (DBMR)
着丝粒缺陷、染色体不稳定性和伴随的 cGAS-STING 通路激活与纤维化标志物增加相关,表明 cGAS-STING 通路与人类疾病的免疫调节有关(Paul 等人,2022 年;Contreras-Galindo 等人,2023 年)。该研究课题促进了对人类疾病中 cGAS-STING 通路激活的多学科理解。此外,它旨在强调 cGAS-STING 调节剂的进展,为治疗自身免疫性疾病和癌症的药物研发工作做出贡献。环鸟苷酸环化酶 (cGAS) 对核外 DNA(无论是自身的还是外来的)的检测在人类健康中起着至关重要的作用(Dvorkin 等人,2024 年)。当 cGAS 与核外 DNA 结合时,它会刺激第二信使环磷酸鸟苷 (cGMP) 的产生,从而激活干扰素基因刺激物 (STING)。STING 激活会触发各种细胞反应,包括干扰素调节因子 3 (IRF3) 的激活和干扰素的释放 (Hopfner and Hornung,2020 年)。cGAS-STING 通路激活可导致多种结果,例如细胞周期停滞、细胞凋亡和免疫系统的募集 (Decout 等人,2021 年)。最近的研究结果表明,染色体分离缺陷可激活系统性硬化症中的 cGAS-STING 通路,可能导致异常的自身免疫反应 (Paul 等人,2022 年)。研究人员正在努力寻找特定且有效的 cGAS-STING 抑制剂,以抑制自身免疫性疾病中的 cGAS-STING 通路。最近的一项研究表明,黄酮类化合物对 cGAS-STING 通路有效(Li 等人,2023 年),此外,黄酮类化合物还具有很强的抗炎活性(Gonfa 等人,2023 年)。本研究课题还强调了甘草提取物和甘草多糖对 cGAS-STING 通路的功效。相反,cGAS-STING 激动剂可能具有治疗益处;最近的一项研究表明,激活该通路会诱导 IFN-β 并启动 CD8 + T 细胞