神经单位活动背后的含义一直是一个挑战,因此它将在可预见的未来持续存在。是最能发表的策略之一,检测高分辨率神经传感器记录中的神经活动,然后正确地将其归因于其相应的源神经元,即峰值分选过程,到目前为止已经盛行。支持不断改进的记录技术和复杂的算法,用于提取有价值的信息和聚类过程中的丰度,这使Spike Smorts Smorts spike smants spike cons spike s smitters s smitters s smange cons s spike of to spike conse spike cons in to spike consection spike swiments <> 在电生理学分析中,Spike Smorts smange smints spike smange smints spike smitters spike smitters。 本评论试图说明,在尖峰分类算法的所有阶段,过去5年的创新都带来了值得与非专家用户社区共享的概念,结果和问题。 通过彻底检查神经传感器,录制程序和各种尖峰分类策略的最新创新,相关知识的骨骼化在此处,并具有更接近原始目标的倡议:在神经转录方面迈出了一个迈出的一步。在电生理学分析中,Spike Smorts smange smints spike smange smints spike smitters spike smitters。 本评论试图说明,在尖峰分类算法的所有阶段,过去5年的创新都带来了值得与非专家用户社区共享的概念,结果和问题。 通过彻底检查神经传感器,录制程序和各种尖峰分类策略的最新创新,相关知识的骨骼化在此处,并具有更接近原始目标的倡议:在神经转录方面迈出了一个迈出的一步。在电生理学分析中,Spike Smorts smange smints spike smange smints spike smitters spike smitters。本评论试图说明,在尖峰分类算法的所有阶段,过去5年的创新都带来了值得与非专家用户社区共享的概念,结果和问题。通过彻底检查神经传感器,录制程序和各种尖峰分类策略的最新创新,相关知识的骨骼化在此处,并具有更接近原始目标的倡议:在神经转录方面迈出了一个迈出的一步。
已经提出了神经网络表示之间的多种(DIS)相似性度量,从而导致了零散的研究景观。这些措施中的大多数属于两个类别之一。首先,诸如线性回归,规范相关分析(CCA)和形状距离之类的措施,都学习神经单位之间的明确映射,以量化相似性,同时考虑预期的不断增长。第二,诸如表示相似性分析(RSA),中心内核比对(CKA)和归一化Bures相似性(NBS)之类的措施都量化了摘要统计数据中的相似性,例如逐个刺激的内核矩阵,它们已经不一致地是预期的。在这里,我们通过观察Riemannian形状距离的余弦(从类别1)等于NB(来自类别2)来统一这两个广泛的方法的步骤。我们探讨了这种联系如何导致形状距离和NB的新解释,并将这些措施的对比与CKA进行对比,这是深度学习文献中的流行相似性度量。
我们使用深度学习方法来破译神经活动的能力可能会从模型大小和数据集方面受益于更大的规模。然而,将许多神经记录的整合到一个统一模型中是具有挑战性的,因为每个记录都包含来自不同单个动物的不同神经元的活性。在本文中,我们介绍了一个培训框架和建筑,旨在模拟各种大规模神经记录的神经活动的人群动态。我们的方法首先将数据集中的个体尖峰构建,以构建神经事件的有效表示,从而捕获神经活动的精细时间结构。然后,我们采用跨注意事项和感知骨干来进一步构建对神经人口活动的潜在令牌化。利用此架构和培训框架,我们构建了一个大规模的多会模型,该模型在来自七个非人类灵长类动物的大型数据集上训练,涵盖了超过158个不同的录音,从27,373多个神经单位和100多个小时的记录中进行了录制。在许多不同的任务中,我们证明了我们验证的模型可以迅速适应具有未指定的神经元对应的新的,看不见的会话,从而可以使用最小的标签来射击。这项工作提出了一种强大的新方法,用于构建深度学习工具,以分析神经数据并为大规模进行培训的清晰途径。
对组织培养物,尤其是脑器官的分析需要复杂的整合和协调多种技术以监测和测量。我们已经开发了一个自动化的研究平台,可实现独立设备,以实现以反馈驱动的细胞培养研究的协作目标。我们的方法可以在各种感应和驱动设备之间的物联网(IoT)体系结构中进行连续,交流,非侵入性交互,从而确切地控制了体外生物学实验的时间。框架整合了微流体,电生理学和成像装置,以维持脑皮质器官,同时测量其神经元活性。类器官是用定制的3D打印室进行培养的,并固定在商业微电极阵列上。使用可授权的微流体泵实现周期性喂养。我们开发了一种计算机视觉量估计器,用作反馈,以纠正媒体喂养/抽吸周期中微流体灌注的偏差。我们通过一组为7天的小鼠大脑皮层器官进行了验证,比较了手动和自动化方案。在整个实验过程中维持鲁棒的神经活动时,对自动化方案进行了验证。自动化系统启用了7天研究的每小时电子生理记录。通过高频记录揭示了每个样本的中位神经单位射击率都会提高和器官射击率的动态模式。令人惊讶的是,进食不会影响率。此外,在录制过程中进行媒体交换表明对发射率没有急性影响,从而使该自动化平台用于试剂筛查研究。