Enrico Premi A,1,Martha Pengo B,C,1,Irene Mattili C,Valentina Canton,Youth Dukart和Robert Gasparotti H,Arababella Bouzigues H,David M St. Robert Laforce Jr P,Fermin Moreno。 R. Butler's Pietro, and Johannes Levin a , ai , ai , Markus Otto ak , Isabelle Le Ber an , o , ap , ap , ap , ap , ap , ap , aq , Florence Pasquier , ace , Jonathan D. Rohrer h , Barbara Boronni a , c , * , a Initiative Fronttemporal Genetic (GENFI)
一旦神经递质与受体结合,就会发生一系列事件。首先,神经递质携带的信息被传递给接收神经元。其次,神经递质被灭活。它要么被酶分解,要么被释放它的轴突重新吸收。其他分子,称为转运分子,完成这一重新吸收过程。这些分子位于释放神经递质的轴突的细胞膜中。它们从突触中拾取特定的神经递质,并将它们带回细胞膜并进入轴突,在那里它们被回收以供日后使用。请注意,这个过程适用于大多数神经递质,但并非适用于所有神经递质。
摘要:神经递质 (NT) 是人类大脑正常运作所必需的化学信使,在人体生理系统中具有特定的浓度。其浓度的任何波动都可能导致多种神经元疾病和障碍。因此,对快速有效的诊断以调节和管理人类大脑疾病或状况的需求正在迅速增加。NT 可以从天然产物中提取。研究人员已经开发出新的协议来提高传感器的传感能力和环保性。深共晶溶剂 (DES) 已成为可持续化学中广受欢迎的“绿色溶剂”。DES 提供了更大的电位窗口范围,有助于增强传感器的电催化性能,并且具有更高的惰性,有助于电极的腐蚀保护,最终为系统提供更好的灵敏度和耐用性。此外,DES 可在工作电极上轻松电沉积不同的材料,这是电催化传感器的主要先决条件。本文首次详细描述了 DES 作为绿色溶剂在检测和提取 NT 中的应用。我们涵盖了截至 2022 年 12 月有关 NT 提取和监测的在线文章。最后,我们总结了该主题并展望了该领域的未来。
最近已经以人工突触的形式引入了基于生化信号活性的突触调节的神经形态系统,该系统是人工突触的形式,这些突触是建立组织交织的平台的模型设备。在这方面,生物杂交突触有望适应性神经元积聚。然而,这些系统从两个分子跨言中辅助,因为生物神经回路信号传递通常涉及多个神经调节剂,并且不稳定的电子接线是需要复杂的架构来接口组织的复杂体系结构。此外,尽管新颖的尖峰电路可以作为人工神经元起作用,但它们只能重新创建生物电信号通路,而电化学信号转导需要进行静脉间通信。因此,人工化学介导的突触对于执行记忆/学习计算功能至关重要。,一种电化学神经形态有机装置(eNODE)作为人工突触,在模拟两个神经递质的突触重量调节及其在突触cleft裂中的循环弹性调节及其回收机械时,它克服了电化学和读取干扰。通过将两个独立的神经递质介导的化学信号转换为PEDOT的可逆和不可逆变化:PSS电导,可以复制神经元短期和长期可塑性。通过利用PEDOT的电致色素特性:PSS,引入了一种替代的光学监测策略,该策略有望从复杂的Bio-Hybrid接口中稳定的多边形读数。平台模拟了高阶生物学过程,例如内在遗忘,记忆巩固和神经递质共同调节。这些受脑启发的功能预示着结合峰值(电神经元)和非尖峰(电化学突触)元素的组织综合神经形态系统的发展,从而设想假肢桥梁用于神经工程和再生药物。
摘要:这篇评论强调了高精度液相色谱的优势,其示例探测器(HPLC-ECD)在检测和量化通过脑外微透析获得的生物学样品方面的优势,具体是血清素作酸和多巴胺能系统:5-HTA,5-HTA,5-HTROX,5-HYDROX,特定于血清素效能系统: 3,4-二羟基苯基乙酸(DOPAC),多巴胺(DA),3-氧化氨基胺(3-MT)和同源酸(HVA)。以其速度和选择性认可,HPLC可以直接分析脑内微透析样品而没有复杂的衍生化。用于神经递质(NTS)和代谢产物分离的各种色谱方法,包括反相(RP)。电化学检测器(ECD),尤其是使用玻璃碳(GC)电极,以其简单性和敏感性强调,旨在通过改性电极材料等优化策略来增强可重复性。本文强调了检测限制(LOD)和定量(LOQ)和线性范围(L.R.)展示了对化合物浓度实时监测的潜力。lod,loq和L.R.的文献值的非排量汇编。包括最近的出版物。
神经传递:神经递质、通道和转运蛋白简介 Blanton 幻灯片 1(标题幻灯片 1):下午好,您可能还记得,上一节课我讲了非甾体抗炎药,但以防万一,请允许我重新介绍一下自己,我叫 Michael Blanton,是药理学和神经科学系的教授。今天,我将对神经传递进行一般性介绍,重点介绍通道和转运蛋白的多样性、结构和功能。在接下来的一个小时里,Josh Lawrence 博士将对神经传递进行回顾,重点介绍膜电位、动作电位以及突触可塑性。我将介绍的材料在 Purves 神经科学教科书(神经科学第 5 版,Dale Purves 等人,2012 年)的第 4 章和第 6 章中介绍,事实上,我将使用的大多数幻灯片都直接来自教科书。话虽如此,您可能还记得我的 NSAID 讲座,我已经写下了我的讲稿,这应该可以在 Sakai 上找到。因此,要学习我的材料,我会先阅读神经科学教科书中的两章,然后将大部分时间集中在我的 ppt 和讲稿上。通道和转运蛋白当然是神经生理学和突触传递的关键因素,大多数中枢神经系统药物都针对这些蛋白质。但是,让我尝试通过一个例子来说明为什么我认为让您充分了解这些参与者如此重要:幻灯片 2:GABA ARA 氯离子传导配体门控离子通道:γ-氨基丁酸或 GABA 是中枢神经系统的主要抑制性神经递质,而 GABA A 受体是许多重要药物的主要靶点 - 示例 1:当我在下一个小时给您讲授全身麻醉药时,一致的看法是,全身麻醉药(丙泊酚、异氟烷、依托咪酯等)的大部分效果是通过它们对 GABA AR 的作用介导的,GABA AR 是一种氯离子传导配体门控离子通道。氯离子进入神经元的运动使膜超极化,使兴奋电流更难导致动作电位;
神经传递的一个特别有趣的地方是,每种神经递质只能与非常特定的匹配受体结合。神经递质与受体的结合方式与钥匙与锁的结合方式非常相似。传递发生后,神经递质要么被酶(一种加速身体某些过程的化学物质)分解,要么被释放它的神经元重新吸收。重新吸收的神经递质可以在以后重新使用。显示神经传递过程的图表。
● 神经元:脑细胞,将信号传递到脑的其他部分(第 1 部分) ● 神经递质:传递来自其他神经元信息的化学物质(第 1 部分) ● 动作电位:神经元内部因接收来自另一个神经元的信号而触发的电信号(第 1 部分) ● 囊泡:轴突末端含有神经递质的小隔间(第 1 部分) ● 多巴胺:一种神经递质(第 1 部分) ● 受体:接收释放信使的特定化学物质 ● 信使:将信号传递到下一个神经元 ● 转运蛋白:将神经递质带回细胞 循序渐进的课堂指南
抽象映射神经递质身份对神经元是理解神经系统中信息流的关键。它还为研究神经元身份特征的发展和可塑性提供了宝贵的入口点。在秀丽隐杆线虫神经系统中,神经纤维 - 米特的身份在很大程度上是通过编码神经递质生物合成酶或转运蛋白的神经递质途径基因的表达模式分析来分配的。但是,其中许多作业都依赖于可能缺乏相关顺式调节信息的多拷贝记者转基因,因此可能无法提供神经递质使用情况的准确图片。我们分析了秀丽隐杆线虫中所有主要类型的神经递质(谷氨酸,乙酰胆碱,GABA,5-羟色胺,多巴胺,多巴胺,酪胺和章鱼胺)中所有主要类型的神经递质的16个CRIS/CAS9工程敲入报告菌株的表达模式。我们的分析揭示了这些神经递质系统在神经元和神经胶质中以及非神经细胞中的新颖位点,最著名的是在性腺细胞中。所得表达的地图集定义了可能仅是神经肽的神经元,它基本上扩展了能够共同传播多个神经递质的神经元的曲目,并鉴定了单胺能神经植物的新颖位点。此外,我们还观察到单胺能合成途径基因的异常共表达模式,这表明存在新型单胺能发射器。我们的分析导致迄今为止,神经递质使用量最广泛的全动物范围图构成了最广泛的全动物范围图,为更好地理解秀丽隐杆线虫中神经元通信和神经元身份规范铺平了道路。
偶联因子(称为 G 蛋白)、第二信使 [例如 cAMP、cGMP、Ca 2 +、一氧化氮 (NO) 和磷脂酰肌醇 (PI) 和花生四烯酸 (AA) 的代谢物] 和蛋白质磷酸化(包括蛋白激酶对磷蛋白的磷酸化和蛋白磷酸酶对磷蛋白的去磷酸化),介导神经递质对其靶神经元的多种作用。第二信使依赖性蛋白激酶(例如由 cAMP 或 Ca 2 + 激活的蛋白激酶)被归类为蛋白丝氨酸/苏氨酸激酶,因为它们在丝氨酸或苏氨酸残基上磷酸化底物蛋白。每个第二信使依赖性蛋白激酶磷酸化都引用一组特定的底物蛋白(可视为第三信使),从而导致神经递质的多种生物反应。对神经递质的多种生物反应可分为三大类。在某些情况下,细胞内信使介导某些神经递质在打开或抑制特定离子通道方面的作用。然而,细胞内信使介导神经递质对其目标神经元的许多其他作用。有些相对短暂,涉及调节神经元的一般代谢状态、合成或释放神经递质的能力以及各种受体和离子通道对各种突触输入的功能敏感性。其他相对长寿,通过调节目标神经元中的基因表达来实现。因此,神经递质通过调节细胞内信使通路和改变基因转录和蛋白质合成,改变了靶神经元中受体和离子通道的数量和类型、这些神经元中细胞内信使系统的功能活动,甚至改变了神经元形成的突触的形状和数量。该图是为了说明细胞内信使系统可以放大神经递质的作用:神经递质与其受体(第一信使水平)结合的单一事件可以通过第二、第三、第四等信使水平起作用,从而产生越来越广泛的生理效应。改编自 Hyman 和 Nestler 1993。