在这项工作中,我们考虑了发布驻留在黎曼流形上的差分隐私统计摘要的问题。我们提出了拉普拉斯或 K 范数机制的扩展,该机制利用了流形上的固有距离和体积。我们还详细考虑了摘要是驻留在流形上的数据的 Fréchet 平均值的特定情况。我们证明了我们的机制是速率最优的,并且仅取决于流形的维度,而不取决于任何环境空间的维度,同时还展示了忽略流形结构如何降低净化摘要的效用。我们用两个在统计学中特别有趣的例子来说明我们的框架:对称正定矩阵的空间,用于协方差矩阵,以及球面,可用作离散分布建模的空间。
抽象量子计算是一个新的令人兴奋的领域,有可能解决一些世界上最具挑战性的问题。当前,随着量子计算机的兴起,主要挑战是创建量子算法(在量子物理学的限制下),并使不是物理学家的科学家可以使用它们。本研究提出了一个参数化的量子电路及其在估计离散值向量的分布度量时的实现。可以从这种方法中得出各种应用程序,包括信息分析,探索性数据分析和机器学习算法。此方法在提供对量子计算的访问并使用户可以在无量子物理学的情况下运行它是独一无二的。在数据集和具有不同参数的五个离散值分布上实现并测试了所提出的方法。结果显示了使用量子计算的经典计算与提出的方法之间的高度一致性。数据集获得的最大误差为5.996%,而对于离散分布,获得了5%的最大误差。
摘要。生成建模已成为近期量子计算机的一个有前途的用例。特别是,由于量子力学的根本概率性质,量子计算机自然地建模和学习概率分布,可能比传统方法更高效。Born 机就是这种模型的一个例子,很容易在近期的量子计算机上实现。然而,在其原始形式中,Born 机只能自然地表示离散分布。由于连续性质的概率分布在世界上很常见,因此必须有一个能够有效表示它们的模型。文献中提出了一些建议,用额外的功能补充离散 Born 机,以便更容易学习连续分布,然而,所有这些都不可避免地在一定程度上增加了所需的资源。在这项工作中,我们提出了基于连续变量量子计算的替代架构的连续变量 Born 机,它更适合以资源最少的方式对此类分布进行建模。我们提供的数值结果表明该模型能够学习量子和经典连续分布,包括在存在噪声的情况下。
线性高斯探索性工具(例如主成分分析 (PCA) 和因子分析 (FA))广泛用于探索性分析、预处理、数据可视化和相关任务。由于线性高斯假设具有限制性,因此对于非常高维的问题,它们已被稳健、稀疏扩展或更灵活的离散-连续潜在特征模型所取代。离散-连续潜在特征模型指定依赖于数据子集的特征词典,然后推断每个数据点共享这些特征的可能性。这通常是使用关于特征分配过程的“富者得富”假设来实现的,其中词典试图将特征频率与其解释的总方差部分结合起来。在这项工作中,我们提出了一种替代方法,可以更好地控制特征到数据点的分配。这种新方法基于双参数离散分布模型,该模型将特征稀疏性和词典大小分离,从而以简约的方式捕获常见和罕见特征。新框架用于推导一种新型自适应因子分析变体 (aFA) 以及自适应概率主成分分析 (aPPCA),能够在各种场景中灵活地发现结构和降低维度。我们推导出标准吉布斯采样以及有效的期望最大化推理近似,这些近似以更快的数量级收敛到合理的点估计解。所提出的 aPPCA 和 aFA 模型的实用性在特征学习、数据可视化和数据白化等标准任务上得到了证明。我们表明,aPPCA 和 aFA 可以为原始 MNIST 或 COLI-20 图像提取可解释的高级特征,或者在应用于自动编码器分析时
1供应链分析3 1.1供应链管理概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.1.1摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.1.2关键概念。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.2数学函数。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 1.2.1摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 1.2.2关键概念。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 1.3数据管理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 1.4概率。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 1.4.1摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 1.4.2关键概念。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 1.4.3离散分布。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.4.4连续分布。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 1.5统计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.5.1统计测试和中心极限定理。。。。。。。。。。。。。。。。。。。。19 1.5.2抽样和置信间隔。。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.5.3假设检验。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23 1.5.4多个随机变量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 1.6回归。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 1.6.1摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 1.6.2普通最小二乘线性回归。。。。。。。。。。。。。。。。。。。。。。。26 1.7优化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 1.7.1摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 1.7.2关键概念。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 1.7.3受约束优化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 1.7.4线性程序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 1.7.5整数和混合整数程序。。。。。。。。。。。。。。。。。。。。。。。。33 1.8网络和非线性编程。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 1.8.1网络模型。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 1.8.2非线性优化。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>40 1.9算法和近似值。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>41 1.9.1摘要。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>41 1.9.2算法。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。41 1.9.3最短路径问题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 1.9.4 Dijkstra的算法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 1.9.5旅行推销员问题(TSP)。。。。。。。。。。。。。。。。。。。。。。。。。。。43 1.9.6车辆路由问题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44 1.9.7 Clark-Wright Savings算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 45 1.9.8节省启发式。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 46 1.9.9用MILP解决VRP。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。44 1.9.7 Clark-Wright Savings算法。。。。。。。。。。。。。。。。。。。。。。。。。。。。45 1.9.8节省启发式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 1.9.9用MILP解决VRP。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。46 1.9.9用MILP解决VRP。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46
[1] Bobotas, P. 和 Koutras, MV (2019)。随机变量随机数的最小值和最大值的分布,《统计与概率快报》,第 146 期,第 57-64 页。[2] Ferreira, MA 和 Andrade, M. (2011)。M/G/∞ 队列繁忙期分布指数,《应用数学杂志》,第 4 (3) 期,第 249-260 页。[3] Forbes, C.;Evans, M.;Hastings, N. 和 Peacock, B. (2011)。《统计分布》,第四版,John Wiley & Sons, Inc.,新泽西州霍博肯。[4] Jodr´a, P. (2020)。根据移位 Gompertz 定律得出的有界分布,《沙特国王大学杂志 - 科学版》,第 32 期,第 523-536 页。 [5] Jodr´a, P. 和 Jim´enez-Gamero, MD 基于指数几何分布的有界响应分位数回归模型,REVSTAT 统计期刊,18(4),415-436。[6] Johnson, NL;Kotz, S. 和 Balakrishnan, N. (1994)。连续单变量分布,第 1 卷第二版,John Wiley & Sons, Inc.,纽约。[7] Mart´ınez, S. 和 Quintana, F. (1991)。广义上截断威布尔分布的检验,统计和概率快报,12(4),273-279。[8] McEwen, RP 和 Parresol, BR (1991)。完整和截断威布尔分布的矩表达式和汇总统计数据,《统计通讯 – 理论与方法》,20(4),1361-1372。[9] Meniconi, M. 和 Barry, DM (1996)。幂函数分布:一种用于评估电气元件可靠性的有用而简单的分布,《微电子可靠性》,36(9),1207-1212。[10] Nadarajah, S.;Popovi´c, BV 和 Risti´c, MM (2013)。Compounding:一个用于计算通过复合连续和离散分布获得的连续分布的 R 包,《计算统计学》,28(3),977-992。[11] Prabhakar, DN;Xie, M. 和 Jiang, R. (2004)。威布尔模型,《概率和统计学中的威利级数》,Wiley-Interscience,John Wiley & Sons,Inc.,新泽西州霍博肯。[12] Rao,ASRS(2006 年)。关于右截断瑞利分布生成函数推导的注记,《应用数学快报》,19(8),789-794。[13] Rinne,H.(2009 年)。《威布尔分布手册》,CRC Press,博卡拉顿。[14] Silva,RB;Bourguignon,M.;Dias,CRB 和 Cordeiro,GM(2013 年)。扩展威布尔幂级数分布的复合类,《计算统计与数据分析》,58,352-367。[15] Tahir,MH;Alizadeh,M.;Mansoor,M; Gauss, MC 和 Zubair, M. (2016)。威布尔幂函数分布及其应用,《Hacettepe 数学与统计杂志》,45(1),245-265。[16] Wingo, DR (1988)。右截断威布尔分布与寿命测试和生存数据的拟合方法,《生物统计学杂志》,30(5),545-551。[17] Wu, Z.;Kazaz, B.;Webster, S. 和 Yang, KK (2012)。交货时间和需求不确定性下的订购、定价和交货时间报价,《生产与运营管理》,21,576-589。[18] Zhang, T.和 Xie, M. (2011). 论上截断威布尔分布及其可靠性含义,可靠性工程与系统安全,96,194–200。