mung豆种子在农业生产和食品加工中非常重要,但是由于它们的多样性和相似的外观,传统的分类方法都具有挑战性,以解决这一问题,这项研究提出了一种基于学习的方法。在这项研究中,基于深度学习模型MobilenetV2,提出了DMS块,并通过引入ECA块和Mish激活函数,即提出了高度优势网络模型,即HPMobileNet,提出,该模型被提出,该模型是在eLBIND中探索的,可用于分类和精确的图像识别。在这项研究中,收集了八种不同的绿豆种子,并通过阈值分割和图像增强技术获得了总共34,890张图像。hpmobilenet被用作主要网络模型,并通过在大规模的绿豆种子图像数据集上进行训练和精细调整,实现了有效的特征提取分类和识别能力。实验结果表明,HPMobileNet在Mung Bean Seed Grain Grain分类任务中表现出色,其准确性从87.40%提高到测试集的94.01%,并且与其他经典网络模型相比,结果表明,HPMobileNet可以达到最佳结果。此外,本研究还分析了学习率动态调整策略对模型的影响,并探讨了将来进一步优化和应用的潜力。因此,这项研究为开发绿豆种子分类和智能农业技术提供了有用的参考和经验基础。
摘要 种子寿命是衡量种子在长期储存期间活力的指标,对于种质保存和作物改良计划至关重要。此外,寿命也是确保粮食和营养安全的重要特征。因此,更好地了解调节种子寿命的各种因素对于改善这一特性和尽量减少种质再生过程中的遗传漂变是必不可少的。特别是,谷物作物种子在储存过程中的变质会对农业生产力和粮食安全产生不利影响。种子变质的不可逆过程涉及不同基因和调控途径之间的复杂相互作用,导致:DNA 完整性丧失、膜损伤、储存酶失活和线粒体功能障碍。确定种子寿命的遗传决定因素并使用生物技术工具对其进行操纵是确保长期种子储存的关键。遗传学和基因组学方法已经确定了几个调节主要谷物(如水稻、小麦、玉米和大麦)寿命特征的基因组区域。然而,对包括小米在内的其他禾本科植物的研究却非常少。部署基因组学、蛋白质组学、代谢组学和表型组学等组学工具并整合数据集将精确定位影响种子存活率的分子决定因素。鉴于此,本综述列举了调节寿命的遗传因素,并证明了综合组学策略对于剖析种子变质的分子机制的重要性。此外,本综述还提供了部署生物技术方法来操纵基因和基因组区域以开发具有长期储存潜力的改良品种的路线图。
花生(Arachis hypogaea)是一种以其独特的发育过程而闻名的精油作物,其特征是空中浮动,其特征是地下水果的发展。该作物是多倍体,由A和B亚基因组组成,这使其遗传分析变得复杂。OMICS技术的出现和进步 - 包括基因组学,转录组学,蛋白质组学,表观基因组学和代谢组学 - 显着提高了我们对花生生物学的理解,尤其是在种子发育以及种子相关性状的调节的背景下。在完成花生参考基因组完成后,研究利用OMICS数据来阐明与种子重量,油含量,蛋白质含量,脂肪酸成分,蔗糖含量和种子外套的颜色以及调节性机制的定量性状基因座(QTL)。本综述旨在总结基于参考基因组指导的OMICS研究的花生种子发展调节和性状分析的进步。它概述了在理解花生种子发育的分子基础中取得的显着进步,从而洞悉了影响关键的农艺特征的复杂遗传和表观遗传机制。这些研究强调了法律数据的重要性,以深刻阐明花生种子发育的调节机制。此外,它们为未来与性状相关功能基因的研究奠定了基础,强调了综合基因组分析在促进我们对植物生物学的理解方面的关键作用。
4 作为审核的一部分,我们可能会邀请申请人与项目主任会面,讨论最终选拔之前的任何关键问题/疑虑——此讨论可以以虚拟方式进行,或者我们可能会通过电子邮件就您的提案的某些方面寻求澄清。
摘要:必须持续提高不同种子的潜在生产力,必须实现农业生产的期望增长。同时,应在正确的时间向用户农民提供合适品种的质量种子,并以合理的成本来实现潜力。这需要对种子部门研究和开发,乘法和分布的子系统进行有效管理。有助于发展这些部门的政策环境至关重要。本文将审查公众,合作社和私营部门的种子企业的性质和功能,以确定与这些企业的管理和整个种子行业有关的问题。这也将建议采用有关政策环境的行业管理的替代方法,以实现经济上可行和技术自力更生的种子行业的长期目标,以应对新兴的挑战。
小溢出物穿着防护设备,以防止皮肤和眼睛污染。避免吸入蒸气或灰尘。用吸光剂(干净的抹布或纸巾)擦拭。收集并密封正确标记的容器或鼓以处置。所有未受保护的人员的大量溢出。溢出时湿滑。避免发生事故,立即清理。穿防护设备,以防止皮肤和眼睛污染和灰尘吸入。锻炼风或增加通风。用湿吸收(惰性材料,沙子或土壤)覆盖。扫掠或真空,但避免产生灰尘。收集并密封正确标记的容器或鼓以处置。如果发生了农作物,下水道或水道的污染,请建议当地的紧急服务。危险货物 - 初始紧急响应指南编号:不适用
摘要:将机器学习(ML)和人工智能(AI)整合到种子科学和技术中代表了农业研究中的变革性范式。这项研究探讨了ML和AI方法的潜力和应用,以增强与种子相关过程的各个方面。从种子生存能力评估到作物产量预测,使用高级算法使人们可以对种子特征有更精确,有效的理解。抽象钻探到了特定的应用中,例如种子育种中的预测性建模,图像识别和数据驱动的决策。通过利用ML和AI的力量,种子科学领域的研究人员和从业人员可以彻底改变传统方法,促进可持续的农业,并确保在不断发展的全球景观中进行粮食安全。
Ilham Y. Abdi 1.2†,Indulekha P. Sudhakaran 17,18,Vasilies 3.4,Elisabeth Kapaki 3.4,George Houlden 16,Laura Parkkinen 10,Wilma D.J.去Berg 11,Michael G.agnaf 1.2 *
•Michiels带来了广泛的种子行业经验,以促进领导力和创新•Agtech初创公司宣布在2025年3月4日在SE六个市场上推出现场试验,这是2025年3月4日 - 领先的瑞典Agritech公司Olsaro,该公司在其独特的族裔遗传学平台上快速稳固地持续了一家人,该公司已公开了众多的Michi eimant of Michi of Michi of Michi of Michie of Michie of Michie。在种子行业具有广泛的背景以及在拜耳,林格林和先正达的领导经验多年的背景,米歇尔斯带来了种子创新和全球市场扩张方面的宝贵专业知识。她将与PINC的负责人Marika King共同主席,因为Olsaro继续在多个地理位置上扩大其气候韧性特征和种子。
