b'given x,y \ xe2 \ x88 \ x88 {0,1} n,设置不相交在于确定某些索引i \ xe2 \ x88 \ x88 \ x88 [n]是否x i = y i = 1。我们研究了在分布式计算方案中计算此功能的问题,在该方案中,在长度路径的两个末端将输入X和Y提供给处理器。该路径的每个顶点都有一个量子处理器,可以通过每回合交换O(log n)Qubits来与其每个邻居进行通信。我们对计算设置不相交所需的回合数感兴趣,而恒定概率远离1/2。我们称此问题\ xe2 \ x80 \ x9cset脱节在行\ xe2 \ x80 \ x9d上。集合脱节,以证明在计算模型中计算任意网络的直径的量子分布式复杂性。但是,当处理器在路径的中间顶点上使用的局部内存受到严重限制时,它们只能提供下限。更确切地说,仅当每个中间处理器的本地内存由O(log n)量子位组成时,它们的边界才适用。在这项工作中,我们证明了E \ xe2 \ x84 \ xa6 3 \ xe2 \ x88 \ x9a'
b'given x,y \ xe2 \ x88 \ x88 {0,1} n,设置不相交在于确定某些索引i \ xe2 \ x88 \ x88 \ x88 [n]是否x i = y i = 1。我们研究了在分布式计算方案中计算此功能的问题,在该方案中,在长度路径的两个末端将输入X和Y提供给处理器。该路径的每个顶点都有一个量子处理器,可以通过每回合交换O(log n)Qubits来与其每个邻居进行通信。我们对计算设置不相交所需的回合数感兴趣,而恒定概率远离1/2。我们称此问题\ xe2 \ x80 \ x9cset脱节在行\ xe2 \ x80 \ x9d上。集合脱节,以证明在计算模型中计算任意网络的直径的量子分布式复杂性。但是,当处理器在路径的中间顶点上使用的局部内存受到严重限制时,它们只能提供下限。更确切地说,仅当每个中间处理器的本地内存由O(log n)量子位组成时,它们的边界才适用。在这项工作中,我们证明了E \ xe2 \ x84 \ xa6 3 \ xe2 \ x88 \ x9a'