但它实际上是一架中型喷气式飞机,横截面积比 Citation XLS+ 稍大。无可否认,它的客舱中央净空高度少 7 英寸;然而,那是因为它拥有连续的平坦地板,而不是 8 英寸的下沉式过道。主座位区比 XLS+ 长 2.7 英尺,在标准行政内饰中可以为 6 人提供舒适的座位。由于湾流 G150、豪客 900XP 和大多数中型 Citations 都已停产,PC-24 的客舱容积为 500 立方英尺,仅凭内部空间大小就可跻身中型喷气式飞机之列。“我们想要一个小型宽体飞机,”董事长 Oscar Schwenk 说。“一开始,它甚至更宽。但这会带来太大的阻力。我们认为现在找到了一个很好的折衷方案。” PC-24 与 PC-12 类似,具有几项独一无二的品质,可以说自成一派。其标志性特征是其 17 平方英尺的后货舱门,可以向上摆动以进入 90 立方英尺的后加压货舱。考虑到飞机 8.8 psi 的增压系统和严格的空重预算,将大门纳入飞机设计绝非易事。机翼后缘和后置发动机进气口与货舱门的距离对皮拉图斯工程师来说是一个更大的挑战。这架喷气式飞机从一开始就设计为在未经改进的跑道上运行,与其他喷气式飞机在认证后适应这一角色不同。坚固的拖曳式主起落架装有四个大型 73 psi 轮胎。每个车轮都有
6.安装 • 按照图 2 连接伺服器、电池和开关线束。仔细检查以确保所有连接器都已正确就位。• 将电源开关打开并操作发射器。观察控制面的移动方向,看它们是否与控制杆运动相对应。使用伺服反向开关(图 3)纠正不正确的伺服方向。• 在整个范围内操作每个伺服器并检查推杆是否卡住。根据需要进行纠正。将每个控制杆保持在极限位置并听伺服嗡嗡声。嗡嗡声表示控制连杆对于伺服行程量来说太紧。可以通过端点调整或加长推杆来纠正。• 对伺服输出臂施加不合理的力会对伺服产生不利影响,并迅速耗尽飞行电池。因此,所有控制连杆应尽可能平稳无摩擦地运行。使用 Hitec“Jam Check'r”确保控制设置平稳、安全。• 安装开关时,切割一个比开关全行程稍大的矩形,然后安装开关,使其从 ON 平稳移动到 OFF。• 接收天线的长度对于接收传输的信号至关重要,因此请勿切割或捆扎天线,尽量保持天线完全伸展。让接收天线远离电源线和伺服线。远离金属框架。• 用海绵橡胶包裹接收器,防止其过度振动(注意:使用 Hitec“飞行保护器:#58480”)。接下来将接收器放入塑料袋中。用橡皮筋固定塑料袋,以防潮防尘。• 完全折叠发射器天线,并在 60 至 90 英尺的距离内操作系统。系统应能完美运行。如果不是,请检查接收器和发射器电池是否处于最大容量。
摘要在沿海海洋中挤压橄榄石富含岩石的岩石的扩散以加速风化反应隔离大气CO 2并降低了大气中的CO 2浓度。他们的风化率取决于不同因素,包括温度和反应表面积。因此,这项研究调查了全球13个区域海岸的基于橄榄石增强的风化率的变化。此外,它还在100年内评估了CO 2隔离,并根据不同的环境条件评估了最大的净序列潜力。使用地球化学热力学建模软件phreeqc进行了模拟。进行了灵敏度分析,探索了影响参数的各种组合,包括晶粒尺寸,海水温度和化学。发现CO 2隔离的显着差异,范围从0.13至0.94公吨(t)的Co 2每吨分布式橄榄石富含橄榄石富含橄榄石的岩石含量为100年。较温暖的沿海区域比温带区域具有更高的CO 2隔离能力,其差异为0.4 t CO 2 /t橄榄石分布。灵敏度分析表明,较小的晶粒尺寸(10 µm)在基于橄榄石的基于橄榄石的增强的风化中表现出较高的净CO 2隔离率(0.87 t/t),这归因于它们较大的反应性表面积。然而,在较高的海水温度下,橄榄石的晶粒尺寸稍大(50和100 µm)仍显示较大的净CO 2隔离率(0.97和0.92 t/t),从而优化了CO 2固存的效率,同时降低了研磨能量的需求。在依靠简化的灵敏度分析,该分析无法捕获现实世界环境动态的全部复杂性,但本研究有助于理解CO 2隔离的变异性和增强风化的可变性和优化,从而支持其作为可持续CO 2拆卸策略的潜力。
2023 年 5 月 2 日 队友 我和我的团队继续在乘客、家人及其宠物的出行中承担重大责任,并始终密切关注风险、费用和对他们健康的担忧。 在过去的一年里,AMC 经历了多起宠物死亡事件,这使得我们有必要审查我们的政策和程序。 因此,AMC 实施了变革,以更好地为我们的乘客服务。 AMC 在提高宠物安全方面取得了重大进展,我们将继续致力于改善 AMC 自有和承包空运的乘客体验。 从本质上讲,我们飞行时宠物存在风险,有些是我们无法控制的,但我们已努力将这些风险降至最低。 我们成立了一个乘客体验改进工作组 (PEIWG),以缓解旅行期间造成的压力。 PEIWG 确定了几个需要改进和实施的领域,包括: - 我们的单位从 Facebook 过渡到美国军队公共信息管理系统,以改善与乘客的沟通。 - 对我们的自动化系统进行了多项更改,以改善乘客通知和沟通。预计今年将推出通过短信和电子邮件进行自动更新的功能。此外,我们还成立了宠物安全工作组,以解决和尽量减少宠物紧急情况的可能性。因此,我们实施了以下政策更新和变更: - 为客运航站楼代理制定了风险确认文件,以便向宠物主人和宠物饲养员简要介绍宠物办理登机手续期间的移动风险(即极端高温、动物紧张等),以确保宠物主人和宠物饲养员了解已知的航空旅行风险。 - 允许宠物主人在乘客登机前的最后一刻或机组人员要求宠物登机前(以先到者为准)保管宠物。 - 实施客运航站楼内宠物区气候控制指南,以保护宠物免受 45 华氏度以下和 80 华氏度以上的极端温度的影响,包括热指数和风寒调整温度。 - 与航空公司协调,增加客舱内宠物箱的尺寸,允许体型稍大的宠物进入客舱空间,而不是待在下层舱室区域。
本文介绍了一种新型,可调且高效的金属 - 绝缘体 - 金属(MIM)等离子体设备的设计和数值研究,专为近红外(NIR)应用而设计。该设备在MIM波导中策略性地放置了策略性的存根谐振器。我们引入了两个小扰动,一个三角形和一个矩形,以实现出色的功能多功能性。采用有限元方法(FEM)并通过传输线方法(TLM)验证的综合数值分析证明了这两种方法之间的工作原理和出色的一致性。我们的模拟驱动方法,uti液化了遗传算法(GA)进行加速优化,对于通过纯粹的实验方法实现性能水平很难或昂贵,至关重要。GA启用了庞大的参数空间的有效探索,设备配置的迭代细化以及几何特征的微调。这种细致的优化使我们能够控制模拟结构中的复杂相互作用。提出的设备基于调整后的几何参数提供不同的功能,包括:A。平坦的带通滤波:在420 nm×540 nm的紧凑型足迹中,达到最大传输效率为95.8%。B.双波段带通滤波:在稍大的450 nm×540 nm尺寸的情况下,保持高传输效率为88.4%。C.三波段缺口滤波:在特定的共振波长中显示最小传输(低于1%),以进行靶向信号抑制。D.等离子体诱导的透明度(PIT)效应:在各种光学功能中提供潜在的应用。和E.完美的吸收:达到99.62%的最大吸收效率,为有效的光收集和操纵铺平了道路。这种多功能等离子设备的紧凑性,可调性和不同的NIR功能性的结合。它对小型化的光学组件,集成光子电路和高级光 - 物质相互作用有希望。我们的发现对紧凑,高效且易于制造的光子技术的发展产生了重大贡献。
在获取磁共振(MR)图像中,较短的扫描时间会导致更高的图像噪声。因此,使用深度学习方法自动图像降解是高度兴趣的。在这项工作中,我们集中于包含线状结构(例如根或容器)的MR图像的图像。特别是,我们研究了这些数据集的特殊特征(连接性,稀疏性)是否受益于使用特殊损失功能进行网络培训。我们特此通过比较损失函数中未经训练的网络的特征图将感知损失转换为3D数据。我们测试了3D图像降级的未经训练感知损失(UPL)的表现,使MR图像散布脑血管(MR血管造影-MRA)和土壤中植物根的图像。在这项研究中,包括536个MR在土壤中的植物根和450个MRA图像的图像。植物根数据集分为380、80和76个图像,用于培训,验证和测试。MRA数据集分为300、50和100张图像,用于培训,验证和测试。我们研究了各种UPL特征的影响,例如重量初始化,网络深度,内核大小以及汇总结果对结果的影响。,我们使用评估METIC,例如结构相似性指数(SSIM),测试了四个里奇亚噪声水平(1%,5%,10%和20%)上UPL损失的性能。我们的结果与不同网络体系结构的常用L1损失进行了比较。我们观察到,我们的UPL优于常规损失函数,例如L1损失或基于结构相似性指数(SSIM)的损失。对于MRA图像,UPL导致SSIM值为0.93,而L1和SSIM损耗分别导致SSIM值分别为0.81和0.88。UPL网络的初始化并不重要(例如对于MR根图像,SSIM差异为0.01,在初始化过程中发生,而网络深度和合并操作会影响DeNo的性能稍大(5卷积层的SSIM为0.83,而核尺寸为0.86,而5卷积层的0.86 vs. 0.86对于根数据集对5卷积层和5卷积层和内核尺寸5)。我们还发现,与使用诸如VGG这样的大型网络(例如SSIM值为0.93和0.90)。总而言之,我们证明了两个数据集,所有噪声水平和三个网络体系结构的损失表现出色。结论,对于图像
虽然有些大型鱼类一眼就能识别出来,或者与彩色照片对比后就能识别出来,但如果没有分类学索引,就无法区分其他鱼类。为了准确识别在野外获得的鱼类,用户必须了解鱼类的一些基本解剖特征。一旦知道了具体的形态特征,就可以进行标准化计数和/或测量来确定鱼类身份。识别鱼类最明显的特征是体型、形状和颜色。不同鱼类的鳍的数量、类型和大小也不同,它们的位置(或完全缺失)有助于区分物种。大多数鱼类有两种基本类型的鳍,单鳍和双鳍。单鳍位于身体中线,包括背鳍、臀鳍和尾鳍。鲶鱼和鳟鱼还具有位于背鳍和尾鳍之间的脂鳍(或肉鳍)。背鳍可以是单鳍或双鳍,其长度和高度因科而异。鱼类之间的尾鳍变化也很常见,一些尾鳍分叉,另一些尾鳍圆润。如果尾鳍的上叶和下叶形成镜像(对称),则称为同尾鳍。鲟鱼等物种的尾部有异尾鳍,其中一个叶比另一个叶稍大(不对称)。成对的鳍包括位于鳃裂后方身体中部附近的胸鳍,以及位于臀鳍和胸鳍之间的腹鳍。大多数鳍由坚硬的棘、柔软的鳍条或两者支撑。鳞片的类型、鳞片数量和鳞片位置在识别鱼类时也提供了有用的信息。北卡罗来纳州的大多数鱼类都有三种鳞片类型中的一种,即硬鳞、圆鳞或栉鳞。硬鳞形成坚硬的盔甲状板,在鲟鱼和雀鳝等原始鱼类中发现。圆鳞触感光滑,在鳟鱼和大多数小鱼上都有。栉鳞含有非常小的刺,在皮肤表面产生粗糙的纹理。太阳鱼科的成员全身覆盖着栉鳞。一些鱼类科的成员(如鲶鱼)没有鳞片。测量不同的外部特征通常用于区分鱼类群体。体长是最常见的测量方法之一。叉长 (FL) 是从吻尖到尾叉最深处的距离。标准长度 (SL) 是从吻尖到位于脊椎末端附近的尾板的距离。北卡罗来纳州内陆猎鱼的尺寸限制是根据鱼的总长度 (TL) 设定的。总长度是从嘴闭合时的吻尖到尾巴最长部分末端的距离。测量总长度时,将尾巴挤压在一起并带到一个点以允许最大距离。眼直径、身体深度和头长是用于识别鱼类的其他测量值的示例。一旦用户熟悉了基本的解剖特征,本文档中包含的分类键可用于区分北卡罗来纳州常见的 14 个鱼类科。本键绝不是北卡罗来纳州鱼类的详尽列表;已知该州有 30 多个鱼类科。未包含在该关键字中的科很少在野外遇到,但如果需要更多信息,请查阅本文档中引用的参考资料。
国际电池委员会 (BCI) 根据物理尺寸将电池尺寸分为不同的组,使用英寸和毫米进行测量。使用 BCI 电池尺寸表可以帮助用户找到合适的替代品。要找到合适的替换电池,必须知道旧电池的 BCI 组号,但仅靠这些信息可能还不够。一些作为最佳匹配的电池可能比标准尺寸稍大,这可能会在紧密贴合的隔间中造成问题。下面提供了列出流行 BCI 电池组及其尺寸的图表:27 组电池:子组尺寸指南27 组电池细分为三个子组,按其尺寸(长 x 宽 x 高)分类。每个子组的实际尺寸为:306 x 173 x 225 毫米、318 x 173 x 227 毫米和 298 x 173 x 235 毫米。选择新电池时,请验证实际尺寸以确保兼容性。 31 组电池概述 BCI 将 31 组深循环电池定义为适用于车辆、船舶和远程电源。这些电池可以多次放电和充电。尺寸:13 英寸长、6 13/18 英寸宽和 9 7/16 英寸高。 34 组电池:中型动力源 BCI 34 组电池为中型,功能强大,提供 750-900 CCA、100-145 分钟的储备容量。它们具有 50-75 Ah 范围内的 20 小时容量。重量在 16.8kg 和 23.1kg 之间不等,具体取决于电池类型和内部结构。 35 组电池:两用电源 BCI 35 组电池常用于启动和两用应用,例如汽车、卡车、房车和医疗设备。这些铅酸电池的尺寸范围从 20h 到 125-230 cm3,电气特性取决于设计、预期用途和电池类型。47、48 和 49 组电池 BCI 51 组电池的尺寸为 9.374 x 5.0625 x 8.8125 英寸和 23.8 x 12.9 x 22.3 厘米,适用于大多数汽车的防振应用。这些吸收性玻璃垫密封铅酸电池设计为适合标准电池仓。BCI 65 组电池通常用于汽车、船舶和工业环境。平均容量范围从 70 到 75 Ah/20h,最大放电电流为 750-950 安培,它们适用于启动和深循环应用。这些中型 AGM SLA 电池通常重 20-25 千克,尺寸为 306 x 190 x 192 毫米(12 x 7.5 x 6.6 英寸)。BCI Group 75 电池主要设计用于汽车和轻工业,具有出色的启动能力和双重用途。它们通常用于汽车、卡车和轻型卡车,为内燃机和各种负载供电。Group 78 电池可用作汽车、轻型卡车、船舶和工业环境中的多种启动和通用电池。它们需要高质量和耐用的性能,以频繁提供大电流和快速充电。它们的尺寸为 10.25 x 7.0625 x 7.6875 英寸(26 x 17.9 x 19.6 厘米),可以与其他组尺寸互换使用。同样来自 BCI 的 94R 组电池广泛用于汽车和轻工业应用,常见于乘用车和商用设备。BCI 94R 组电池类型包括 H7、L4 和 LN4,主要用于宝马、奔驰、奥迪等公司生产的车辆。这些电池在低温条件下提供电力,充电迅速,支持各种车载电子设备,并可承受自动启停应用。尺寸范围从 12.4 x 6.9 x 7.5 英寸到 315 x 175 x 190 毫米,重约 3.6 至 25.8 公斤。常见的 BCI 集团电池包括:* GC2 和 GC2H:深循环电池,用于高尔夫球车、船舶应用、离网系统、医疗和安全系统。* 尺寸:(长 x 宽 x 高)GC2 为 10.375 x 7.18 x 10.625 英寸或 264 x 183 x 270 毫米,GC2H 为 11.625 英寸或 295 毫米。其他电池类型包括:* BCI 集团 GC8 和 GC8H:重型深循环电池,用于高尔夫球车、船舶应用、离网系统、医疗和安全系统。* 尺寸:(长 x 宽 x 高)GC8 为 10.375 x 7.18 x 10.625 英寸或 264 x 183 x 277 毫米,GC8H 为 11.625 英寸或 295 毫米。 BCI Group GC12 电池为汽车、离网和轻工业应用提供可靠电力,专为深循环使用和离网发电而设计。这种类型的电池通常用于高尔夫球车和其他需要稳定电源的应用。BCI Group 提供一系列电池,包括 4D、6D 和 8D 电池等重型商用电池,以及 U1 和 U1R 电池等通用电池。这些电池的尺寸因其大小而异。- **BCI Group 4D、6D 和 8D 电池:** - 这些是重型商用电池,用于高需求应用,如离网系统、安全和医疗设备备用装置、电动车、车辆电池和船用马达电池。- 它们具有相似的高度和长度,但宽度不同。例如: - BCI 组 4D 电池:20 3/4 x 7 9/16 x 10 1/2 英寸或 527 x 193 x 266 毫米 - BCI 组 6D 电池:21 5/8 x 8 1/4 x 12 1/4 英寸或 549 x 210 x 311 毫米 - BCI 组 8D 电池:20 3/4 x 11 x 9 7/8 英寸或 527 x 279 x 251 毫米 - **BCI 组 U1 和 U1R 电池:** - 这些是通用电池,用于医疗和安全设备、高尔夫球车、割草机、露营和电动滑板车等应用。 - 它们有以下尺寸: - BCI 电池组尺寸 U1:7 3/4 x 5 3/16 x 7 5/16 英寸或 197 x 132 x 186 毫米 - BCI 电池组尺寸 U1R(U216):6 5/16 x 5 3/16 x 7 1/8 英寸或 160 x 132 x 181 毫米 这些电池专为特定用途而设计,具有不同的容量、重量和尺寸。汽车电池有各种尺寸和规格,有些很轻,有些很重。有些类似于标准 AA 电池,有些则具有独特的形状。12v 电池的尺寸差异很大,范围从 8 3/16 x 6 13/16 x 8 3/4 英寸到 10 1/4 x 6 13/16 x 9 3/8 英寸。这些尺寸特定于汽车电池,与其他电子应用中使用的尺寸不同。船舶、儿童玩具车和户外设备的电池也因其预期用途而具有不同的尺寸。有些电池是可充电的,这是可能的,因为启动车辆只需要初始电流。然后交流发电机接管,为电池充电。可充电电池适合频繁使用,而不可充电电池更适合不频繁使用。制造商还开发了较小版本的电池,例如用于鱼探仪的电池。将 12v 电池与 6v 电池进行比较会发现显著差异。 12v 电池包含六个电池,提供比 6v 电池(100 安培小时)高出两倍的电压和更大的安培小时容量(200-2400 瓦时)。