摘要 本研究论文介绍了一种用于“超大规模集成”(VLSI)应用的新型 22 晶体管 (22T)、1 位“全加器”(FA)。所提出的 FA 源自混合逻辑,该逻辑是“栅极扩散输入”(GDI)技术、“传输门”(TG)和“静态 CMOS”(SCMOS)逻辑的组合。为了评估所提出的 FA 的性能,在“设计指标”(DM)方面将其与最先进的 FA 进行了比较,例如功率、延迟、“功率延迟乘积”(PDP)和“晶体管数量”(TC)。为了进行公平比较,所有考虑的 FA 都是在常见的“工艺电压温度”(PVT)条件下设计和模拟的。模拟是使用 Cadences 的 Spectre 模拟器使用 45 nm“预测技术模型”(PTM)进行的。仿真表明,在输入信号频率 fin=200 MHz 和电源电压 V dd =1 V 时,所提出的 FA 的“平均功率耗散”(APD) 为 1.21 µW。它的“最坏情况延迟”(WCD) 为 135 ps,并且“功率延迟积”(PDP) =0.163 fJ。进一步为了评估所提出的 FA 在 V dd 和输入信号操作数大小方面的可扩展性,它嵌入在 64 位 (64b)“行波进位加法器”(RCA) 链中,并通过将 V dd 从 1.2 V 以 0.2 V 的步长降低到 0.4 V 来进行仿真。仿真结果表明,只有所提出的 FA 和其他 2 个报道的 FA 能够在不同的 V dd 值下在 64b RCA 中运行,而无需使用任何中间缓冲器。此外,我们观察到,与其他 2 个 FA 相比,所提出的 FA 具有更好的功率、延迟和 TC。关键词:全加器、PDP、低功耗、静态 CMOS、门扩散输入、传输门逻辑
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 2 月 8 日发布。;https://doi.org/10.1101/2024.02.06.579165 doi:bioRxiv 预印本
©2022 Elsevier出版。此手稿可在Elsevier用户许可证下提供https://www.elsevier.com/open-access/userlicense/1.0/
Travis LeCompte 的工作得到了路易斯安那州董事会研究生奖学金的支持。这项工作部分得到了美国国家科学基金会 (NSF) 拨款 OIA-2019511 的支持,部分得到了 NSF 计算探险项目“启用实用规模量子计算 (EPiQC)”的资助,资助金额为 CCF-1730449,部分得到了量子软件定制架构 (STAQ) 的资助,资助金额为 NSF Phy-1818914,部分得到了美国能源部 (DOE) 高级科学计算研究办公室、量子计算加速研究计划的支持,部分得到了 NSF 量子飞跃挑战混合量子架构和网络研究所 (NSF 奖 2016136) 的支持,部分得到了美国能源部科学办公室、国家量子信息科学研究中心的支持,部分得到了陆军研究办公室 (拨款 W911NF-23-1-0077) 的支持,部分得到了橡树岭领导计算设施的支持,该设施是美国能源部科学办公室用户设施,受合同资助DE-AC05-00OR22725。
超冷极性分子在量子模拟、计量和信息处理方面具有巨大潜力,因为它们具有强电偶极 (ED) 相互作用,这种相互作用既长距离,又各向异性,更重要的是,可调 [1 – 16] 。将它们用于这些目标的必要条件是能够利用其固有的 ED 相互作用来创建高度纠缠和长寿命的分子状态,这些状态对环境退相干具有鲁棒性,例如用于增强传感的自旋压缩态 [17 – 19] ,或用于基于测量的量子计算的簇状态 [20 – 25] 。到目前为止,简单的双碱分子(如 KRb)的旋转态已被提议作为编码量子比特的主要主力和自然自由度 [1 – 12] 。这是因为长寿命旋转态可以通过长程电致发光相互作用直接耦合,并由微波 (mw) 场操纵 [26,27] 。然而,旋转态具有重要的局限性,阻碍了它们用于纠缠生成:(1) 在不同旋转状态下制备的超冷分子通常会经历不同的捕获势,因此容易受到不良退相干的影响,导致相干时间短 [28 – 30] ; (2) 多体哈密顿参数的微调需要使用强大且控制良好的直流电场 E [1,11] 。由于这些场需要时间来切换和变化,因此使用旋转态之间的长程电致发光相互作用按需生成纠缠仍然是一项重大的实验挑战。为了克服这些重要的限制,我们在此提出利用超冷极性分子中可访问的更大的内部能级集,其中包括核和/或电子自旋能级以及它们的旋转结构。总的来说,这些能级可以用作按需纠缠生成的强大资源。通过将有效自旋-1 = 2 编码为一组核自旋和旋转分子能级,我们利用了长
超冷极性分子在量子模拟、计量和信息处理方面具有巨大潜力,因为它们具有强电偶极 (ED) 相互作用,这种相互作用既长距离,又各向异性,更重要的是,可调 [1 – 16] 。将它们用于这些目标的必要条件是能够利用其固有的 ED 相互作用来创建高度纠缠和长寿命的分子状态,这些状态对环境退相干具有鲁棒性,例如用于增强传感的自旋压缩态 [17 – 19] ,或用于基于测量的量子计算的簇状态 [20 – 25] 。到目前为止,简单的双碱分子(如 KRb)的旋转态已被提议作为编码量子比特的主要主力和自然自由度 [1 – 12] 。这是因为长寿命旋转态可以通过长程电致发光相互作用直接耦合,并由微波 (mw) 场操纵 [26,27] 。然而,旋转态具有重要的局限性,阻碍了它们用于纠缠生成:(1) 在不同旋转状态下制备的超冷分子通常会经历不同的捕获势,因此容易受到不良退相干的影响,导致相干时间短 [28 – 30] ; (2) 多体哈密顿参数的微调需要使用强大且控制良好的直流电场 E [1,11] 。由于这些场需要时间来切换和变化,因此使用旋转态之间的长程电致发光相互作用按需生成纠缠仍然是一项重大的实验挑战。为了克服这些重要的限制,我们在此提出利用超冷极性分子中可访问的更大的内部能级集,其中包括核和/或电子自旋能级以及它们的旋转结构。总的来说,这些能级可以用作按需纠缠生成的强大资源。通过将有效自旋-1 = 2 编码为一组核自旋和旋转分子能级,我们利用了长
过去几十年的自然灾害清楚地表明,自然灾害给政府和社区带来了高昂的财政和人力成本。这方面的担忧日益增加。在危机管理周期的每个阶段做出正确的决策并采取适当和及时的措施将减少灾难发生时的潜在损害并降低社会的脆弱性。因此,在本研究中,引入了考虑灾难救济中初级和次级危机问题的危机物流规划数学模型,这是本研究的创新之处。在初级危机中,目标是向危机地区提供服务和救援物资,在第二阶段,在初级危机之后发生的次级危机寻求向危机中心提供救援并将受伤人员转移到救援中心。因此,本研究在两个初级和次级危机中提出了一个数学模糊理想规划模型。在初级危机中,目标是向危机地区提供服务和救援物资。在初级危机之后发生的次级危机旨在在第二阶段支持危机中心并将受伤人员转移到救援基地。根据所提出的模型,我们最初使用了 Bertsimas 和 Sim [1] 提出的 Bertsimas-Sim 模糊规划公式和稳健方法。Epsilon 约束方法用于解决低维模型。设计了多目标元启发式算法来处理大规模实时问题的计算复杂性。提出了多重比较和分析来评估模型的性能和解决问题的能力。结果表明,所提出的方法可以应用于开发现实世界的人道主义物流网络。关键词:关键物流、初级和次级危机、模糊稳健集成规划、元启发式算法。
我们考虑三层 F 1 F 2 F 3 约瑟夫森结,它们在二维上是有限的,并且每个铁磁体 F i (i=1,2,3) 具有任意磁化强度。三层夹在两个 s 波超导体之间,它们具有宏观相位差∆ φ。我们的结果表明,当磁化具有三个正交分量时,超电流可以在∆ φ = 0 处流动。利用我们的广义理论和数值技术,我们研究了电荷超电流、自旋超电流、自旋扭矩和态密度的平面空间分布和∆ φ 依赖性。值得注意的是,当将中心铁磁层的磁化强度增加到半金属极限时,自偏置电流和感应二次谐波分量显著增强,而临界超电流达到其最大值。此外,对于很宽范围的交换场强度和方向,系统的基态可以调整为任意相位差 ϕ 0 。对于中间层 F 2 中的中等交换场强度,可以出现 ϕ 0 状态,从而产生超导二极管效应,从而可以调整 ∆ ϕ 以产生单向无耗散电流。自旋电流和有效磁矩揭示了半金属相中的长距离自旋扭矩。此外,态密度揭示了相互正交磁化配置的零能量峰的出现。我们的结果表明,这种简单的三层约瑟夫森结可以成为产生实验上可获得的长距离自偏置超电流和超流二极管效应特征的绝佳候选者。
我们提出了一种受生物启发的循环神经网络 (RNN),它可以有效检测自然图像中的变化。该模型具有稀疏拓扑连接 (st-RNN),与“中脑注意网络”的电路架构紧密相关。我们将 st-RNN 部署到一个具有挑战性的变化视盲任务中,该任务必须在一系列不连续的图像中检测变化。与传统 RNN 相比,st-RNN 的学习速度提高了 9 倍,并且以减少 15 倍的连接实现了最佳性能。低维动力学分析揭示了假定的电路机制,包括全局抑制 (GI) 基序对成功变化检测的关键作用。该模型再现了关键的实验现象,包括中脑神经元对动态刺激的敏感性、刺激竞争的神经特征以及中脑微刺激的标志性行为效应。最后,该模型在变化盲视实验中准确预测了人类注视点,超越了最先进的基于显着性的方法。st-RNN 提供了一种新颖的深度学习模型,用于将变化检测背后的神经计算与心理物理机制联系起来。