美国地质调查局将 Price 流速计的良好流量测量结果归类为在真实值的 ±5% 以内。有些人认为,这种假设的误差是乐观的。无论如何,在许多河流系统中,±5% 意味着 ±1 英尺的水位误差。声速计提供连续记录,但当前的美国地质调查局技术会校准这些仪表以重现 Price 流速计的测量结果,因此 AVM 与流速计一样准确。船测总是值得怀疑。人们认为,使用在船上安装三根光束的声速计的较新技术要好得多。还应仔细检查已发布的流量记录。连续流量是根据流量测量(通常每两周或每月进行一次)和连续水位记录计算得出的。测量结果被汇编成流量曲线,后续测量与流量曲线的偏差用于定义偏移。偏移是由于非稳定流效应(环状流量曲线)和短期地貌变化导致的流量曲线的暂时变化。记录的质量取决于流量测量的频率和水文学家的技能。唯一的方法是将流量测量值与流量记录进行比较。不过,如果测量频率不高,则只能将流量记录应用于模型,看看水位记录的再现效果如何。记住!大多数已发布的流量记录都是平均日流量。建模者必须以某种方式为这些记录分配时间值。
您将使用宾夕法尼亚州中部白头鹰溪上的赛耶斯大坝的数据集。赛耶斯大坝位于洛克黑文镇上游约 15 英里处,该镇受到堤坝系统的保护。请参见下图以熟悉该数据集。
参与者必须具备良好的明渠水力学背景,并熟悉 HEC-RAS 软件。本课程不涵盖基本的 HEC-RAS 输入和输出数据要求。学生必须是经验丰富的工程师,他们曾参加过 HEC-RAS 稳定流课程,也曾参加过 HEC-RAS 非稳定流建模课程,或者有使用非稳定流建模组件应用 HEC-RAS 的经验。参与者必须担任目前从事使用 HEC-RAS 进行水力调查的职位
a. 水利工程研究。各种水文工程研究都需要水文测量支持来定义基本模型。这些研究或模型包括 HEC/GEO-RAS(河流分析系统)、稳定流水面剖面、非稳定流模拟、UNET(非稳定流网络水力模型)、泥沙输送建模、洪水淹没建模、水力洪水水位建模和预报、洪水淹没建模和绘图以及洪水损害评估。水利研究通常需要三个一般数据类别:(1) 流量、(2) 几何形状和 (3) 泥沙。水文测量员可能需要获取这三个类别中任何一个的基本现场信息。获取河段和毗邻河岸和洪泛区几何形状是迄今为止最常见的。
沉积物输送接口模块由 Stanford A. Gibson 先生编写。准非稳定流计算沉积物输送功能由 Stanford A. Gibson 和 Steven S. Piper 开发。非稳定流沉积物输送模块由 Stanford A. Gibson、Steven S. Piper 和 Ben Chacon (RMA) 开发。特别感谢 Tony Thomas 先生(HEC-6 和 HEC-6T 的作者)协助开发 HEC-RAS 中使用的准非稳定流沉积物输送程序。二维沉积物输送模块由 Alex Sanchez 和 Stanford Gibson 开发。HEC-RAS(1D 和 2D)中的泥石流功能由 Stanford Gibson 和 Alex Sanchez 开发。大部分沉积物输出由 Stanford Gibson 和 Alex Sanchez 设计,并由 Anton Rotter-Sieren 编程。
沉积物输送接口模块由 Stanford A. Gibson 先生编写。准非稳定流计算沉积物输送功能由 Stanford A. Gibson 和 Steven S. Piper 开发。非稳定流沉积物输送模块由 Stanford A. Gibson、Steven S. Piper 和 Ben Chacon (RMA) 开发。特别感谢 Tony Thomas 先生(HEC-6 和 HEC-6T 的作者)协助开发 HEC-RAS 中使用的准非稳定流沉积物输送例程。二维沉积物输送模块由 Alex Sanchez 和 Stanford Gibson 开发。HEC-RAS(1D 和 2D)中的泥石流功能由 Stanford Gibson 和 Alex Sanchez 开发。大部分沉积物输出由 Stanford Gibson 和 Alex Sanchez 设计,并由 Anton Rotter-Sieren 编写。
一维 HEC-RAS 在复杂河网中的洪水演算非稳定流中被广泛使用和熟知(Baldassarre 和 Montanari,2009),并且还有一个好处,就是它可以在互联网上免费获取。SOBEK-RURAL 在流体动力学计算中使用完整的圣维南方程,是一种在水力洪水演算中执行 1D 和 2D 非稳定流分析的有效软件(Deltares,2010)。此外,Deltares 免费为本研究工作提供 SOBEK-RURAL,即使它不是免费提供的。由于这些原因,1D HEC-RAS 和 1D2D SOBEK-RURAL 用于本研究工作,但是有许多可用的水力和水文建模软件程序。
HEC RAS 由水文工程中心 (HEC) 开发,该中心隶属于美国陆军工程兵团水资源研究所 (IWR)。该软件可以模拟不同洪水条件下河流和水道的流量 (USACE, 2016)。模拟可以在一维 (1D)、二维 (2D) 或一维或二维组合中进行。它可以处理单一河段、树枝状或全网络河流中稳定或逐渐变化的稳定流水面剖面。HEC RAS 还可以处理一维、二维或一维-二维组合环境中的非稳定流模拟。在非稳定环境中,可以使用存储区、二维流动区域和河段之间的水力连接来建模。HEC RAS 的另一个特点是能够对长期冲刷和沉积造成的沉积物/可移动边界进行建模。HEC RAS 的最后一个特点是能够对河流质量分析进行建模。它可以对藻类、溶解氧等许多水质成分进行详细的温度分析和传输 (USACE, 2016) 在本研究中使用了 1D 非稳定流模拟。河流长度超过 500 公里,横截面的最大宽度接近 150 公里(包括洪泛平原)。7.3.1.几何数据几何数据是从 ArcGIS 创建的 .sdf 格式文件导入的。它包含节点名称、河段长度、站点高程数据、河岸站、曼宁系数和 GIS 切线。横截面之间的原始距离大约为 5 公里,并根据 HEC RAS 的一些技术论坛的建议将其插值到 500 米的距离以防止负流。大多数横截面有超过 500 个点,但 HEC RAS 不接受这些点。每个横截面的最大点数限制为 500 个点。为了解决这个问题,我们通过几何工具横截面点过滤器过滤了横截面点。我们对横截面进行了一些进一步的调整,例如起始高程低于河道最低高程和河岸位置。下图显示了编辑后的几何数据。
摘要 飞机表面可能发生气动弹性不稳定性,导致疲劳或结构故障。颤振是一种气动弹性不稳定性,会导致结构自激发散振荡行为。经典的二自由度颤振是弯曲和扭转振动模式的组合。已经开发了一种柔性支架系统,用于风洞中刚性机翼的颤振试验。这种柔性支架必须提供一个明确定义的二自由度系统,刚性机翼在该系统上遇到颤振。在进行任何风洞颤振试验之前,进行了实验模态分析 (EMA) 和有限元模型分析 (FEM),以验证固有频率和模式。使用拉格朗日方程开发了系统的运动方程。通过三种不同的方法确定临界颤振速度:稳定流的 p 方法、经典颤振分析和非稳定流的 k 方法,并与实验结果进行了比较。关键词:气动弹性、颤振、柔性结构、风洞试验、实验模态分析、有限元模型分析。1. 简介气动弹性是指研究气流中弹性结构变形与由此产生的气动力之间相互作用的研究领域。气动弹性研究主要有两个领域。首先,静态气动弹性涉及弹性力和气动力之间的相互作用,忽略