起伏平原生态区 – 这是一个起伏平缓的地区,包含牧场,溪流和河流从西向东流淌,流向东部和东南部的跨林区和草原区。起伏平原生态区南部与爱德华兹高原生态区接壤,西部与高平原生态区接壤。土壤从细沙到粘土和粘壤土不等。本地草类包括小须芒草、蓝格拉玛草、侧穗格拉玛草、印第安草和沙须芒草。由于历史上的牲畜放牧习惯和景观中缺乏自然火灾,该地区的许多牧场已被一年生和多年生草本植物、豆科植物和木本植物入侵。主要木本植物包括红莓桧、丝兰、牧豆树、莲藕、朴树、大叶木、仙人掌、臭鼬灌木、麻黄、李子、西部无患子、小叶漆树、小栎、塔萨希罗、阿加里托、猫爪相思树、酸橙刺柏、沙鼠尾草等。牧豆树草原占据了这一生态区域的大片地区。大溪沿岸的洼地里有美国榆树、柳树、山核桃和三角叶杨。石灰岩山脊和陡峭的地形提供了更大的木本植物多样性,并为各种野生动物提供了栖息地。(德克萨斯州公园和野生动物部)
Abe, VY, & Benedetti, CE (2016). PthAs 在细菌生长和致病性的附加作用与柑橘溃疡病易感基因效应结合元件的核苷酸多态性有关。分子植物病理学,17 (8),1223---1236。http://dx.doi.org/10.1111/mpp.12359 Afroz, A., Chaudhry, Z., Rashid, U., Ali, GM, Nazir, F., Iqbal, J., & Khan, MR (2011). 表达 Xa21 基因的转基因番茄 ( Lycopersicon esculentum ) 品系对细菌性枯萎病的抗性增强。植物细胞、组织和器官培养,104 (2),227---237。 http://dx.doi.org/10.1007/s11240-010-9825-2 Almeida, RPP、de La Fuente, L.、Koebnik, R.、Lopes, JRS、Parnell, S. 和 Scherm, H. (2019)。应对新的全球威胁木霉 (Xylella fastidiosa)。植物病理学, 109(2), 172---174. http://dx.doi.org/10.1094/PHYTO-12-18-0488-FI Attílio, LB, Filho, F. de AA M, Harakava, R., Da Silva, TL, Miyata, LY, Stipp, LCL 和 Mendes, BMJ (2013)。遗传
库制备基于经过验证的杂交捕获化学,可从基于DNA和RNA的库中纯化选定的靶标。生物素化的探针与感兴趣的区域杂交,这些区域使用链霉亲和素涂层的磁珠将其拉下,然后洗脱以丰富库池。基于杂交的富集是一种有用的策略,用于分析给定样品中的特定遗传变异,并可靠地测序外部或大量基因(例如,> 50个基因)。它在广泛的输入类型和数量上提供可靠的结果。混合捕获化学具有比扩增子测序的几个优点,包括产生较少的伪影和辍学的数据。此外,杂交捕获化学是融合不可知的,可以检测和表征已知和新型融合。与基于扩增子的方法不同,该方法需要确认性测试,因为可能会出现假阳性,而混合捕获方法高度敏感,并且可以准确地表征已知和新型伴侣的基因融合。
光学活性先进发光材料已在光电子学、安全系统、光学成像和多种记录设备领域得到广泛应用。合成和表征具有生物或化学来源的天然或合成发光材料是当今科学研究的热门话题。因此,本文旨在提供有关某些自然现象的宝贵信息,例如光致发光、荧光、磷光、电致发光、阴极发光、生物发光、化学发光、离子发光、液致发光、放射性发光(闪烁)、声致发光和热激发发光及其不同类型。同样,还讨论了硫酸钠、双(8 羟基喹诺酮)、单分散二氧化硅、荧光二氧化硅球、硫醇修饰的发光二氧化硅、链霉亲和素修饰的发光二氧化硅、铱双吡啶、Eu (DBM) 3 作为探针分子、酚类偶氮染料、通过有机溶剂提取的植物黄酮类化合物和荧光素分子的一些合成方法,以及它们的应用和未来前景。关键词:发光、电致发光、化学发光、铱双吡啶、硫酸钠
植物水分关系,水、离子、溶质从土壤到植物的吸收和运输机制,质外体和共质体运输机制。气孔运动机制、氮代谢、光合作用;C3、C4 和 CAM 循环、光呼吸、呼吸:糖酵解、TCA 循环和电子传递链。植物对非生物胁迫的反应和机制,包括干旱、盐度、冻害和高温胁迫、金属毒性;脱落酸在非生物胁迫中的作用。生物分子(蛋白质、碳水化合物、脂质、核酸)的结构和功能,酶动力学。主要植物次生代谢产物(生物碱、萜烯、苯丙烷类、黄酮类)的结构和生物合成。生长素、细胞分裂素、赤霉酸、油菜素类固醇、乙烯、独脚金内酯、脱落酸、水杨酸和茉莉酸的生物合成、作用机制和生理效应。衰老和程序性细胞死亡。第 5 节:遗传学和基因组学
植物水分关系,水、离子、溶质从土壤到植物的吸收和运输机制,质外体和共质体运输机制。气孔运动机制、氮代谢、光合作用;C3、C4 和 CAM 循环、光呼吸、呼吸:糖酵解、TCA 循环和电子传递链。植物对非生物胁迫的反应和机制,包括干旱、盐度、冻害和高温胁迫、金属毒性;脱落酸在非生物胁迫中的作用。生物分子(蛋白质、碳水化合物、脂质、核酸)的结构和功能,酶动力学。主要植物次生代谢产物(生物碱、萜烯、苯丙烷类、黄酮类)的结构和生物合成。生长素、细胞分裂素、赤霉酸、油菜素类固醇、乙烯、独脚金内酯、脱落酸、水杨酸和茉莉酸的生物合成、作用机制和生理效应。衰老和程序性细胞死亡。第 5 节:遗传学和基因组学
在整个进化过程中,大多数酿酒酵母菌株都失去了合成生物素的能力,生物素是几种羧化酶的必不可少的辅助因子。结果,必须从环境中吸收必需的维生素或其前体,并经常在发酵中补充以达到高细胞密度。与生物素无关的酿酒酵母菌株的工程是消除对外部生物素供应的需求。在此,我们通过工程旁乙酰辅酶A羧化酶(一种在合成脂肪酸的合成中的基本生物素依赖性酶)来描述了与生物素无关的酵母菌菌株的构建。除了无生物素培养基中的生长量完全挽救外,与生物素相比,酿酒酵母菌株的生长显着改善。除了其工业相关性之外,此处报道的酵母菌菌株在基础研究领域可能很有价值,例如,用于开发新的选择标记或提高生物蛋白 - 链霉亲蛋白技术在生物系统中的多功能性。
斯蒂芬英年早逝,年仅 47 岁,他的许多朋友、同事、学生、法庭同事和音乐家都将永远怀念他。仅凭这一点,就足以证明他拥有无可置疑的智慧、创造力和沟通能力,而他的热情和精力在众多领域也堪称一流。斯蒂芬在伊斯灵顿长大,1968 年进入剑桥大学冈维尔与凯斯学院攻读医学科学。他的同时代人也许会最记得他对自由爵士乐的热爱,以及他连续几年将音乐节目《Stony Ground》和《Make Me, Make You》带到爱丁堡艺穗节所发挥的作用。他早期在国家青年爵士乐团的经历,以及他心目中的偶像查理·帕克的启发,无疑影响了他组建史蒂夫·菲桑特五重奏组,该组从 20 世纪 70 年代中期到 80 年代初一直在德鲁里巷的白鹿旅馆演出。史蒂夫的密友兼乐队成员伊恩·卡梅隆回忆道,史蒂夫的多才多艺和萨克斯风的波普创意、他偶尔演唱的“让美好时光滚滚而来”以及乐队的“静坐”风格,都反映了史蒂夫的热情和参与精神。这些,加上他强烈的奉献精神,在他的职业生涯中得到了立即的认可。史蒂夫在皇家自由医院和大学学院讲授解剖学、生物力学和人体工程学多年,他的学生们很少能遇到比他更出色的沟通者。
在植物功能基因组学领域,褚成才研究组对多种水稻地方品种的NUE相关性状进行了评估,并通过GWAS鉴定了OsTCP19启动子中与分蘖对氮的反应(TRN)相关的变异,表明OsTCP19在适应不同地理区域局部土壤条件下发挥的重要作用(Liu et al., Nature , 2021)。左建如研究组证明了Ghd7和ARE1的优良等位基因组合在低氮条件下提高了NUE和籽粒产量,定义了基于Ghd7–ARE1的氮利用调控机制,为水稻NUE的遗传改良提供了有用的靶点(Wang et al., Mol Plant , 2021)。王永红研究组与合作者描述了造成水稻GNP多样性的新型遗传变异,揭示了调控农学重要基因表达的潜在分子机制,并为通过操纵含有顺式调控元件的IR序列来提高水稻产量提供了一种有希望的策略(Wu et al., Mol Plant , 2021)。姚善国研究组与合作者揭示了LARGE2- APO1/APO2模块介导控制水稻穗大小和粒数的新型遗传和分子机制,表明该模块是改良作物穗大小和粒数的一个有希望的靶点(Huang et al., Plant Cell , 2021)。
稻瘟病是影响全球水稻生产的最常见的破坏性疾病。宿主生物的抗性已成为控制稻瘟病最实用、最经济的方法。最近的研究表明,序列特异性核酸酶(有规律地聚集在一起)间隔短回文重复序列 (CRISPR)/Cas9 技术被认为是通过基因特异性基因组编辑增强作物的最成功和最有效的工具。然而,关于它们在改良优良水稻品种方面的应用报道并不多。在本研究中,我们描述了 Cas9-OsHDT-sgRNA 表达基因盒的开发,该基因盒靶向水稻中的 OsHDT701 基因并提高水稻的稻瘟病抗性。根据 Sanger 测序方法,这些植物的目标位置发生了缺失 (Del) 改变。我们证明,具有预期基因改变但没有移植 DNA 的突变系显示 OsHDT701 基因诱导的等位基因突变。用 M13 引物确认重组克隆。在突变纯合植物中,对植物的高度、大小、形状、叶片长度、穗长和叶片反应等表型和农艺性状进行了检查,以确定其抗稻瘟病性。与野生型植物相比,所有突变株系因病原体感染而引起的稻瘟病病变明显减少。此外,从外观上看,突变植物和野生植物在农艺性状方面没有显著差异。我们的研究结果表明,CRISPR/Cas9 基因编辑系统是一种增强水稻抗稻瘟病性的实用方法。