Shor 算法 [16] 引入了整数分解问题和离散对数问题的多项式时间可解性,这对公钥密码原语造成了巨大的量子威胁。对于对称密钥方案,长期以来,Grover 算法 [7] 被认为是最佳攻击方式,它通过一个二次因子加速了私钥的穷举搜索。因此,将密钥长度加倍可抵御此类攻击,将方案的量子安全性提升到经典方案的水平。利用 Simon 算法 [17] 的强大功能,Kuwakado 和 Mori 对 3 轮 Feistel [13] 的选择明文攻击和对 Even-Mansour 密码 [14] 的量子攻击为量子环境下对称密钥方案的密码分析开辟了新的方向。
物理小区 ID (PCI) 是区分 5G 等电信网络中各种天线或小区的关键数字标识符。它们在促进移动设备有效连接到不同小区、防止干扰等问题方面发挥着至关重要的作用。然而,5G 网络规模不断扩大,再加上唯一 PCI 池有限,为相邻小区分配不同的 PCI 是一个称为 PCI 规划问题的挑战。在这种情况下,本文探讨了使用量子计算 (QC) 解决 PCI 规划问题。近年来,随着 QC 的显著进步,QC 在解决复杂优化问题方面显示出巨大潜力。为了辨别 QC 可以为 PCI 规划带来的优势,我们分析了经典方法和量子方法在不同网络配置中的性能。我们的结果表明,量子方法可以得到与穷举搜索相当的解决方案,但执行时间大大缩短,为 QC 和电信领域开辟了新的研究机会。
量子计算机和模拟器可能比经典计算机和模拟器具有显著的优势,它们可以洞悉量子多体系统,并可能提高解决优化和可满足性等指数级难题的性能。在这里,我们报告了使用模拟量子模拟器实现的低深度量子近似优化算法 (QAOA)。我们估计具有可调范围的长程相互作用的横向场伊辛模型的基态能量,并通过对 QAOA 输出进行高保真、单次、单独量子比特测量采样来优化相应的组合经典问题。我们通过穷举搜索和变分参数的闭环优化来执行算法,用最多 40 个捕获离子量子比特来近似基态能量。我们使用随系统大小多项式缩放的引导启发式方法对实验进行基准测试。我们观察到,与数值结果一致,随着系统规模的扩大,QAOA 性能不会显著下降,并且运行时间与量子比特的数量基本无关。最后,我们对系统中发生的错误进行了全面分析,这是将 QAOA 应用于更一般的问题实例的关键一步。
摘要。量子傅里叶变换是量子密码分析的基本工具。在对称密码分析中,依赖于 QFT 的隐藏移位算法(如 Simon 算法)已用于对某些非常特殊的分组密码进行结构攻击。傅里叶变换也用于经典密码分析,例如 Collard 等人引入的基于 FFT 的线性密钥恢复攻击(ICISC 2007)。此类技术是否可以适应量子环境至今仍是一个悬而未决的问题。在本文中,我们介绍了一种使用 QFT 进行量子线性密钥恢复攻击的新框架。这些攻击大致遵循 Collard 等人的经典方法,因为它们依赖于对关联状态的快速计算,其中实验关联不是直接可访问的,而是编码在量子态的振幅中。实验相关性是一种统计数据,对于好的密钥,该统计数据预计会更高,并且在某些情况下,增加的幅度会相对于对密钥的穷举搜索产生加速。同样的方法还产生了一系列新的结构攻击,以及使用经典已知明文查询的二次方以外的量子加速的新例子。
选择与运动想象 (MI) 具有功能相关性的脑电图 (EEG) 特征是基于脑机接口 (BCI) 的运动康复成功的关键任务。MI 期间的个体 EEG 模式需要基于受试者的特征选择,由于特征的复杂性和数量庞大,这是一项艰巨的任务。一种解决方案是使用元启发式算法,例如遗传算法 (GA),以避免不切实际的穷举搜索。在本研究中,使用最广泛使用的 GA 之一 NSGA-II 和分层个体表示来排除与 MI 无关的 EEG 通道。本质上,在先前记录的 MI EEG 数据集上评估了 NSGA-II 中不同目标的性能。实证结果表明,k-最近邻(k-NN)与皮尔逊相关系数(PCFS)相结合作为目标函数,与其他目标组合相比,分类准确率更高(73% vs. 69%)。线性判别分析(LDA)与特征减少(FR)相结合作为目标函数,最大程度地减少了特征(99.6%),但降低了分类性能(65.6%)。所有与 PCFS 相结合的分类器目标都根据 MI 期间的预期活动模式选择了类似的特征。总之,PCFS 和分类器作为目标函数构成了 MI 数据的良好权衡解决方案。
对于通用量子计算,实际实施需要克服的一个主要挑战是容错量子信息处理所需的大量资源。一个重要方面是实现由量子纠错码中的逻辑门构建的任意幺正算子。通过组装从一小组通用门中选择的逻辑门序列,可以使用合成算法将任何幺正门近似到任意精度,这些通用门在量子纠错码中编码时可容错执行。然而,目前的程序还不支持单独分配基本门成本,许多程序不支持扩展的通用基本门集。我们使用基于 Dijkstra 寻路算法的穷举搜索分析了标准 Clifferd+T 基本门集的成本最优序列,并将其与另外包括 Clifferd 层次结构更高阶的 Z 旋转时的结果进行了比较。使用了两种分配基本门成本的方法。首先,通过递归应用 Z 旋转催化电路将成本降低到 T 计数。其次,将成本指定为直接提炼和实现容错门所需的原始(即物理级)魔法状态的平均数量。我们发现,使用 Z 旋转催化电路方法时,平均序列成本最多可降低 54 ± 3%,使用魔法状态提炼方法时,平均序列成本最多可降低 33 ± 2%。此外,我们通过开发一个分析模型来估计在近似随机目标门的序列中发现的来自 Clifford 层次结构高阶的 Z 旋转门组的比例,从而研究了某些基本门成本分配的观察局限性。
量子计算的概念通常归功于理查德·费曼,他在 1981 年推测,模拟量子力学系统的行为需要一台本质上具有量子力学性质的计算机 [1, 2];马宁 [3] 和贝尼奥夫 [4] 也在大约同一时间提出了类似的想法。1985 年,大卫·多伊奇通过形式化计算的量子力学模型,并提出量子计算具有明显计算优势的明确数学问题,为我们现在所知的量子计算奠定了基础 [5]。这反过来又引发了 20 世纪 80 年代末和 90 年代初当时尚处于萌芽阶段的量子计算领域的大量活动,并产生了该领域的两个至今仍是最重要的成就:1994 年,彼得·肖尔 (Peter Shor) 提出了一种在多项式时间内分解因式的量子算法 [6];1996 年,洛夫·格罗弗 (Lov Grover) 提出了一种搜索非结构化数据库的算法,其时间与数据库大小的平方根成比例 [7]。非结构化搜索(在这种情况下)是这样的问题:我们有 N = 2n 个元素(索引为 { 0 , 1 } n )需要搜索,还有一个“函数”f,对于恰好一个 x ∈ { 0 , 1 } n ,f(x) = 1,否则 f(x) = 0。 “非结构化”意味着没有算法捷径——f 只是技术意义上的函数,并不意味着它可以表示为一些简单的代数表达式——因此,经典上最好的(唯一)策略是穷举搜索,这要求在最坏的情况下对所有 N 个元素进行评估,平均而言对 N/2 个元素进行评估。从量子角度来看,我们可以准备所有可能的 n-双串的叠加,因此“查询”f 以获得所有可能的
多级阈值处理是计算机视觉中的一个重要操作,计算机视觉是人工智能 (AI) 的一个子领域,用于理解和解释现实世界中的数据。现有的基于图像直方图的多级阈值熵方法主要处理除碎片边界之外的熵信息的最大化,这降低了准确性。这些问题导致阈值精度差且速度慢。为了解决这个问题,我们提出了一种基于相互依赖性的新技术,该技术使用碎片边界,这是一个最小化问题。研究了一个第一手目标函数,它处理碎片边界。传统的多级阈值技术由于穷举搜索过程而计算成本高昂,另一种方法是使用基于自然启发算法的进化计算。本文还提出了一种用于多级阈值的新优化器,称为自适应平衡优化器 (AEO),它是对基本平衡优化器 (EO) 的改进,通过为表现不佳的搜索代理实施自适应分散决策。使用标准基准函数将 AEO 性能与最先进的算法——平衡优化器 (EO)、灰狼优化器 (GWO)、鲸鱼优化算法 (WOA)、松鼠搜索算法 (SSA) 和风驱动优化 (WDO) 算法进行了比较。基于定性和定量分析,AEO 的表现优于 EO、GWO、WOA、SSA 和 WDO。通过使用 AEO 最小化目标函数来获得最佳阈值。对于实验,考虑了 BSDS 500 数据集的 500 张图像。考虑了峰值信噪比 (PSNR)、结构相似性指数 (SSIM) 和特征相似性指数 (FSIM) 等流行指标进行定量分析。在计算复杂度降低的同时,阈值精度存在显著差异。强调了本文的优点,以确保其未来在使用软计算(AI 的一个子领域)的工程应用领域中的应用。