人类探索和开发近地空间已有六十多年。最近二十年,我们迎来了新太空时代——由于进入门槛大幅降低,当前的太空活动全球化、多样化、快速扩张——其特点是航天国家和公司增多、碰撞风险增加、冲突风险不断增加。1 然而,50 年前为管理太空活动而制定的基本条约和机制只发生了微小的变化。要求在太空治理和“负责任”太空行为方面取得更多进展的呼声越来越高,而且来自越来越多的群体。2 为了帮助解决当前太空治理与未来需求之间存在的差距问题,本展望对改进负责任太空行为的必要性进行了初步评估,简要描述了一些主要进展障碍,并就如何进行改进提出了初步建议,重点关注最需要关注和最有可能使所有人受益的领域。本展望旨在为缺乏深空专业知识但有权影响其国家或太空部门未来太空政策的全球政策制定者提供信息。本展望还旨在开始规划路线
摘要 — 卫星通信 (SatComs) 最近进入了新一轮的关注期,这得益于技术进步以及私人投资和风险投资。本调查旨在捕捉卫星通信的最新进展,同时强调最有前景的开放研究课题。首先,主要创新驱动因素包括新星座类型、机载处理能力、非地面网络和基于空间的数据收集/处理。其次,描述了最有前景的应用,即 5G 集成、空间通信、地球观测、航空和海上跟踪与通信。随后,从五个方面提供了深入的文献综述:i) 系统方面、ii) 空中接口、iii) 介质访问、iv) 网络、v) 测试平台和原型设计。最后,描述了一些未来挑战和相应的开放研究课题。
空间研究委员会的行星保护政策是全球技术官僚治理的胜利。该政策由一群科学专家制定,随后受到科学和空间界的高度重视。然而,由于空间研究委员会是一个没有任何法律授权的独立组织,行星保护政策是所谓“软法”或不具约束力的国际文书的一个例子,简而言之,没有人有任何法律义务遵守它们。该政策与《外层空间条约》第九条及其呼吁避免对月球和其他天体造成“有害污染”的规定相关。虽然地球轨道以外的空间活动一直是政府科学空间机构的专属领域,但这并没有造成什么问题。然而,随着私人和“非科学”空间活动的激增并开始将其范围扩展到地球轨道以外,行星保护政策正在接受考验。本文将探讨在“新太空”时代制定和维持有效的行星保护制度所面临的挑战。这将涉及现有政策及其所处的治理框架。然而,不仅要考虑和了解政策本身的具体内容,还要考虑和了解政策必要性的科学基础。最后,本文将考虑是否需要更广泛的“环境”框架,因为太空活动的类型和地点多种多样。
踏上月球半个多世纪后,人类走到了人生的十字路口。随着21世纪科技发展的势头,太空研究愈加深入,并从2020年开始结出硕果。除非新冠病毒疫情在最后一刻阻止其爆发,否则今年将会测试新的运载火箭,向月球和火星发射新的机器人飞行器,卫星互联网市场将会兴起,并将采取措施进行载人离轨飞行。美国航天局 (NASA) 将使用太空发射系统 (SLS) 进行首次发射尝试,据称 SLS 是有史以来最强大的火箭,猎户座 [1] 太空舱将于 2020 年 [2] 搭载宇航员登上月球。伊隆·马斯克著名的 SpaceX 公司在与美国国家航空航天局联合实施的项目框架内,用猎鹰 9 号火箭从肯尼迪航天中心成功发射了载人龙飞船,该飞船搭载着美国宇航员道格·赫尔利和鲍勃·本肯,并且顺利与国际空间站对接 [3]。中国[4]正为将宇航员送上月球做准备,将于今年发射嫦娥五号飞船。嫦娥五号任务的目标是从月球采集土壤样本并带回地球。如果此次任务成功,中国将成为继美国和俄罗斯之后第三个从月球上采集土壤样本的国家。中国还将于今年开始将其新空间站天宫三号的首批舱段发射入轨道 [5] 。美国计划于 2021 年开始建造一个名为“月球逍遥游”的月球轨道空间站 [5] 。
• 通过关于卫星可跟踪性、卫星识别以及运营商计划如何共享与空间态势感知相关的信息(如星历数据)的披露要求。 • 将地球静止轨道卫星许可证延期的信息要求编入法典,并将每次延期的期限限制为五年。 • 澄清委员会关于维持授权站控制权(包括卫星指挥通信)的现行高级要求。 • 通过一项要求,即许可证持有者必须赔偿美国根据国际外层空间条约对美国提出的任何索赔所产生的费用,从而澄清责任问题。 • 澄清修订后的规则(某些例外情况除外)适用于委员会规则第 5、25 和 97 部分下的申请人,包括第 25 部分下的美国市场准入申请人。
摘要 — 卫星通信 (SatComs) 最近进入了新一轮的关注期,这得益于技术进步以及私人投资和风险投资。本调查旨在捕捉卫星通信的最新进展,同时强调最有前景的开放研究课题。首先,主要创新驱动因素包括新星座类型、机载处理能力、非地面网络和基于空间的数据收集/处理。其次,描述了最有前景的应用,即 5G 集成、空间通信、地球观测、航空和海上跟踪与通信。随后,从五个方面提供了深入的文献综述:i) 系统方面、ii) 空中接口、iii) 介质访问、iv) 网络、v) 测试平台和原型设计。最后,描述了一些未来挑战和相应的开放研究课题。
我做研究的主要方法是用谷歌搜索我的主题,但后来我开始缩小主题范围。当我开始这个项目时,我首先开始在互联网上进行谷歌搜索,但后来我使用了网站。我在维基百科上一直滚动到页面底部,找到了有用的网站。我在那里找到了很好的资源,给了我很多信息。我找到的最好的资料不是互联网,而是一次采访。这次采访实际上告诉了我 Sputnik 1 面临的一些挑战,以及苏联人是如何解决这个问题的。尽管我从采访中了解到,但有些挑战很难知道,而且很少发生。作为个人,我面临的挑战是,有时我有很多工作,但我很少能完成。我的父母帮助我,鼓励我完成我的项目。
为了概念清晰,图 70.1 中的 STAP 配置将可能集成的孔径分为两部分:最有可能由雷达发射器共享的主孔径,以及用于抑制宽带噪声干扰器 (WNJ) 的空间分布通道辅助阵列。为方便讨论,假设主孔径具有 N c 列元件,列间距等于半波长,每列中的元件组合在一起以产生预先设计的非自适应仰角波束模式。主孔径的大小(就系统所选波长而言)是一个重要的系统参数,通常由系统规范确定,包括所需的发射器功率孔径乘积以及方位角分辨率。典型的孔径尺寸范围从某些短程雷达的几个波长到某些机载预警系统的 60 多个波长。模拟波束形成网络将主孔径的 N c 列组合起来以产生 N s 个接收器通道,这些通道的输出被数字化以供进一步处理。需要注意的是,[ 1 ] 中提出的最早的 STAP 方法,即所谓的“元素空间”方法,是图 70.1 中 N s = N c 的特例。模拟波束形成器的设计会影响