在大约30年的时间里,固体火箭电动机(SRM)的喷嘴将人造丝的航空航天级用作碳织物加固的前体,用于用作烧蚀性绝缘体的酚类复合材料。人造丝一直是行业的中流型,现代喷嘴设计一直取决于Car-bon,织物/酚类或石墨织物/酚类组合的特性。多年来,工业一直取决于唯一的源供应商。现有的供应商北美人造丝公司是该国最后尚存的人造丝制造商。像许多航空航天供应商一样,它受到国防采购中的削减的影响,并计划删除航空航天级人造丝的生产。目前,生产正在继续进行生命类型购买的订单。这些命令将在1996年底之前完成,届时,持续灯丝rayon的国内来源将消失。
空军系统司令部联络处设在渥太华,其职责之一是了解加拿大工业的最新能力和趋势,并向美国空军研发部门提供这些信息。本指南是为了实现这一目标而预先编写的。它提供了 184 家表示有兴趣与美国空军做生意的公司的描述性数据。所有信息均由各公司提供。引导新条目的是加拿大外交部。这是通过报纸、杂志以及与加拿大政府各部门的联系获得的。本指南介绍了加拿大航空航天工业的代表性横截面。 o 加拿大外交部出版的《面向全球市场的通信产品》。加拿大在航空航天、通信、电子和航天领域有着巨大的工业承诺。正如人们所预料的那样,这些行业主要集中在安大略-魁北克走廊,从温莎延伸到多伦多和渥太华,终止于蒙特利尔。其他具有不断扩大的工业基础的地区包括温尼伯(曼尼托巴省)、埃德蒙顿-卡尔加里(阿尔伯塔省)和温哥华(不列颠哥伦比亚省)地区。魁北克省和哈利法克斯(新斯科舍省)地区也为加拿大的工业能力做出了重大贡献。与本指南的其他版本一样,第四版没有
在过去的几十年里,航天/航空航天飞行器的先进制导与控制 (G&C) 系统的设计受到了全世界的广泛关注,并将继续成为航空航天工业的主要关注点。毫不奇怪,由于存在各种模型不确定性和环境干扰,基于鲁棒和随机控制的方法在 G&C 系统设计中发挥了关键作用,并且已经成功构建了许多有效的算法来制导和操纵航天/航空航天飞行器的运动。除了这些面向稳定性理论的技术外,近年来,我们还看到一种日益增长的趋势,即设计基于优化理论和人工智能 (AI) 的航天/航空航天飞行器控制器,以满足对更好系统性能日益增长的需求。相关研究表明,这些新开发的策略可以从应用的角度带来许多好处,它们可以被视为驱动机载决策系统。本文系统地介绍了能够为航天/航空航天飞行器生成可靠制导和控制命令的最先进的算法。本文首先简要概述了航天/航空航天飞行器的制导和控制问题。随后,讨论了有关基于稳定性理论的 G&C 方法的大量学术著作。回顾并讨论了这些方法中固有的一些潜在问题和挑战。然后,概述了各种最近开发的基于优化理论的方法,这些方法能够产生最佳制导和控制命令,包括基于动态规划的方法、基于模型预测控制的方法和其他增强版本。还讨论了应用这些方法的关键方面,例如它们的主要优势和固有挑战。随后,特别关注最近探索 AI 技术在飞行器系统最佳控制方面的可能用途的尝试。讨论的重点说明了航天/航空航天飞行器控制问题如何从这些 AI 模型中受益。最后,总结了一些实际实施考虑因素以及一些未来的研究主题。
航空航天环境是 RSESS 重点领域的核心课程,旨在向您介绍近地空间环境及其对航天器、通信系统、宇航员等的影响。从事空间技术或应用的航空航天工程师需要对环境有广泛的了解,以便适当地设计他们的航天器。但更一般地说,任何对太空充满热情的人都会对了解太空环境的不同区域、它们如何相互耦合和影响以及它们如何影响我们的日常生活感兴趣。我们将“近地”空间环境定义为受太阳影响的环绕地球的空间区域,也是我们大多数卫星运行的地方。因此,本课程重点介绍环绕地球的空间环境——不要指望了解太阳系、星系、行星际空间等。但是,我们将研究其他行星周围的环境,以便与地球进行比较,例如“近木星”空间环境。近地空间环境从地球表面一直延伸到弓形激波,弓形激波是磁层的外边界。在这个环境中,有不同的重叠区域:由中性分子和原子组成的大气层;电离层,大气中的气体被电离;等离子层,气体完全电离并被困在地球磁场中;以及辐射带,其中包含高能电子和质子。这些区域受到地球磁场的影响,而该磁场占主导地位的区域称为磁层。磁层内有不同种类的粒子、不同的电流以及各种复杂的等离子体和电磁波。此外,环境中还包含我们太阳系中的尘埃和流星体,以及我们直接负责的航天器和轨道碎片。在本课程中,我们将了解每个区域、它们存在的原因以及它们对航天器、宇航员和社会各个方面产生的积极和消极影响。它们对航天器和宇航员有电和辐射影响;对 GPS 和其他航天器的通信信号有影响;磁场扰动对地面有影响;尘埃和流星体对航天器有影响;等等。本课程分为多个模块,涵盖太空环境的每个区域,每个模块大约持续两周。在每个模块中,将阅读指定
• 使用优化参数的 Renishaw AM400 机器制造了无裂纹的 HAYNES ® 282 ® ,这是一种专为高温结构应用而开发的超级合金。打印合金中孔隙率的降低与激光参数有关,包括激光速度、图案填充距离和其他因素。 • L-PBF 制造的 HAYNES ® 282 ® 的典型结构由柱状结构、等轴晶粒和超细晶粒组成。加工参数对强化相的析出起着至关重要的作用,在使用棋盘和蛇形图案打印的合金中分别观察到球形和立方体强化相。 • L-PBF 制造的 HAYNES ® 282 ® 在打印和热处理状态下都表现出优异的机械性能,具有高屈服强度和极限拉伸强度 (UTS)。
(c) 除本条 (f) 款规定的情况外,涡轮转子完全失去负荷所导致的最高超速必须包括在本条 (b)(3)(i)、(b)(3)(ii) 和 (b)(4) 款考虑的超速条件中,无论该超速是由发动机内部故障还是发动机外部故障导致。在选择适用于每个转子的最严格超速条件时,必须考虑由任何其他单一故障导致的超速。还必须考虑由故障组合导致的超速,除非申请人能证明发生的可能性不大于极小(概率范围为每发动机飞行小时 10 −7 至 10 −9)。
由 Emerald 出版。这是已获作者认可的手稿,其发行方式为:知识共享署名非商业许可证 (CC:BY:NC 4.0)。最终出版版本(记录版本)可在线获取,网址为 DOI:10.1108/AEAT-07-2022-0197。请参阅任何适用的出版商使用条款。
通常,作战需求将对航空航天平台的作战场景和所需任务能力进行一般性描述。综合导航系统将具有各种作战模式,这些模式将以各种方式对其所处的特定作战环境做出反应。因此,作战需求必须详细阐述预期任务,并定义任务每个阶段对导航系统的要求。技术需求必须将多种任务能力和环境转化为技术能力和参数,以便开发系统设计。
摘要 数字孪生 (DT) 主要是任何可想象的物理实体的虚拟复制品,是一项具有深远影响的高度变革性技术。无论是产品开发、设计优化、性能改进还是预测性维护,数字孪生都在通过多种多样的业务应用改变各个行业的工作方式。航空航天业(包括其制造基地)是数字孪生的热衷者之一,他们对数字孪生的定制设计、开发和在更广泛的运营和关键功能中的实施表现出前所未有的兴趣。然而,这也带来了一些对数字孪生技术的误解,以及对其最佳实施缺乏了解。例如,将数字孪生等同于智能模型,而忽略数据采集和可视化的基本组成部分,会误导创建者构建数字影子或数字模型,而不是实际的数字孪生。本文揭示了航空航天界和其他领域数字孪生技术的复杂性,以消除影响其在安全关键系统中有效实现的谬误。它包括对数字孪生及其组成元素的全面概述。阐述其特征性的最新组成以及相应的局限性,航空航天领域未来数字孪生的三个维度,第三
航空业正面临越来越大的压力,需要通过长期战略来减少排放,以满足不断增长的飞行乘客数量。目前运行的飞机通常是在设计时将机身与推进系统分开考虑的。这样一来,传统的航空发动机架构在推进效率方面已接近极限,而技术进步带来的收益却越来越少。一种有前途的替代架构可以提高下一代商用飞机的整体性能,它依赖于边界层吸入 (BLI)。这项技术将机身与战略性定位的推进系统在空气动力学上耦合,以有目的地吸入机身的边界层流。尽管如此,对于 BLI 效益的解释和量化仍缺乏共识。这主要是因为传统的性能核算方法在强气动耦合的情况下失效。随后,定义适当的性能指标以提供一致测量和潜在效益比较是一项重大挑战。本评论研究了用于评估 BLI 性能的各种会计方法和指标。这些内容在数值和实验模型的背景下进行了讨论和批评。从数值上讲,几何、空气动力学和推进模型按保真度顺序排序,同时使用大量方法进行流动特征识别,从而实现对 BLI 的现象学理解。然后特别关注具有不同设置、方法和相关限制和不确定性的实验 BLI 模型。最后,参考其相关的设计探索和优化研究,对众多非常规 BLI 飞机概念进行了分类、比较和批评。
