• 使用优化参数的 Renishaw AM400 机器制造了无裂纹的 HAYNES ® 282 ® ,这是一种专为高温结构应用而开发的超级合金。打印合金中孔隙率的降低与激光参数有关,包括激光速度、图案填充距离和其他因素。 • L-PBF 制造的 HAYNES ® 282 ® 的典型结构由柱状结构、等轴晶粒和超细晶粒组成。加工参数对强化相的析出起着至关重要的作用,在使用棋盘和蛇形图案打印的合金中分别观察到球形和立方体强化相。 • L-PBF 制造的 HAYNES ® 282 ® 在打印和热处理状态下都表现出优异的机械性能,具有高屈服强度和极限拉伸强度 (UTS)。
空军系统司令部联络处设在渥太华,其职责之一是了解加拿大工业的最新能力和趋势,并向美国空军研发部门提供这些信息。本指南是为了实现这一目标而预先编写的。它提供了 184 家表示有兴趣与美国空军做生意的公司的描述性数据。所有信息均由各公司提供。引导新条目的是加拿大外交部。这是通过报纸、杂志以及与加拿大政府各部门的联系获得的。本指南介绍了加拿大航空航天工业的代表性横截面。 o 加拿大外交部出版的《面向全球市场的通信产品》。加拿大在航空航天、通信、电子和航天领域有着巨大的工业承诺。正如人们所预料的那样,这些行业主要集中在安大略-魁北克走廊,从温莎延伸到多伦多和渥太华,终止于蒙特利尔。其他具有不断扩大的工业基础的地区包括温尼伯(曼尼托巴省)、埃德蒙顿-卡尔加里(阿尔伯塔省)和温哥华(不列颠哥伦比亚省)地区。魁北克省和哈利法克斯(新斯科舍省)地区也为加拿大的工业能力做出了重大贡献。与本指南的其他版本一样,第四版没有
导航的几何概念、参考框架、坐标变换、变换方法比较。惯性传感器、惯性导航系统-机械化、外部辅助导航、组合导航。模块 4:制导简介(7 个讲座小时)导弹制导律;制导律的分类;经典制导律;现代制导律、自动驾驶仪 - 纵向、横向和导弹。模块 5:控制简介(8 个讲座小时)控制系统简介开环和闭环控制系统-传递函数极点和零点-框图简化-信号流图-梅森增益公式模块 6:系统稳定性(9 个讲座小时)特征方程-稳定性概念-劳斯稳定性标准根轨迹。经典线性时不变控制系统。稳定性;时域特性。航空航天系统的 PID 控制器设计。频域特性、奈奎斯特和波特图及其在航空航天系统控制器设计中的应用。教科书:
1. 介绍导航、制导和控制的概念 2. 熟悉航空航天飞行器的各种制导和控制方式 3. 学生还可通过设计飞行控制系统来学习实现的动态目标。 4. 熟悉火箭和导弹的控制原理 5. 深入了解航天器的机动 课程成果:
摘要 :增材制造 (AM) 是一项尖端技术,可提供高达 100% 的材料效率和显著的重量减轻,这将对飞机燃料消耗产生积极影响,并且具有很高的设计自由度。因此,许多航空航天公司都在考虑实施 AM,这要归功于这些好处。因此,本研究的目的是帮助航空航天组织在不同的 AM 技术中进行选择。为此,通过半结构化访谈收集了 (8) 位 AM 领域专家的原始数据,并与二手数据进行交叉引用,以确定在选择用于航空航天应用的 AM 设备时需要考虑的关键因素。专家们强调了四种 AM 技术:激光粉末床熔合 (LPBF)、电子束粉末床熔合 (EBPBF)、线弧 AM (WAAM) 和激光金属沉积 (LMD),认为它们最适合航空航天应用。本研究的主要成果是开发了一个比较框架,帮助公司根据其主要业务或特定应用选择 AM 技术。
参数 尺寸 单位 质量 M 千克,kg 长度 L 米,m 时间 T 秒,s 温度 Ϫ 开尔文,K,摄氏度 速度 L/T 米/秒,m/s 密度 ML –3 千克/米 3 力 ML –1 T –2 牛顿,N = 1 千克·米/秒 2 压力 ML 2 T –2 N/米 2 ,帕斯卡,Pa 能量,功 ML 2 T –3 Nm,= 焦耳,J 功率 ML 2 T –3 J/s,瓦特,W 绝对粘度 ML –1 T –1 Ns/米 2 ,Pa-s 运动粘度 L 2 T –1 米 2 /s 热导率 MLT –3 Ϫ –1 W/mK,W/mo C
在过去的几十年里,航天/航空航天飞行器的先进制导与控制 (G&C) 系统的设计受到了全世界的广泛关注,并将继续成为航空航天工业的主要关注点。毫不奇怪,由于存在各种模型不确定性和环境干扰,基于鲁棒和随机控制的方法在 G&C 系统设计中发挥了关键作用,并且已经成功构建了许多有效的算法来制导和操纵航天/航空航天飞行器的运动。除了这些面向稳定性理论的技术外,近年来,我们还看到一种日益增长的趋势,即设计基于优化理论和人工智能 (AI) 的航天/航空航天飞行器控制器,以满足对更好系统性能日益增长的需求。相关研究表明,这些新开发的策略可以从应用的角度带来许多好处,它们可以被视为驱动机载决策系统。本文系统地介绍了能够为航天/航空航天飞行器生成可靠制导和控制命令的最先进的算法。本文首先简要概述了航天/航空航天飞行器的制导和控制问题。随后,讨论了有关基于稳定性理论的 G&C 方法的大量学术著作。回顾并讨论了这些方法中固有的一些潜在问题和挑战。然后,概述了各种最近开发的基于优化理论的方法,这些方法能够产生最佳制导和控制命令,包括基于动态规划的方法、基于模型预测控制的方法和其他增强版本。还讨论了应用这些方法的关键方面,例如它们的主要优势和固有挑战。随后,特别关注最近探索 AI 技术在飞行器系统最佳控制方面的可能用途的尝试。讨论的重点说明了航天/航空航天飞行器控制问题如何从这些 AI 模型中受益。最后,总结了一些实际实施考虑因素以及一些未来的研究主题。
在大约30年的时间里,固体火箭电动机(SRM)的喷嘴将人造丝的航空航天级用作碳织物加固的前体,用于用作烧蚀性绝缘体的酚类复合材料。人造丝一直是行业的中流型,现代喷嘴设计一直取决于Car-bon,织物/酚类或石墨织物/酚类组合的特性。多年来,工业一直取决于唯一的源供应商。现有的供应商北美人造丝公司是该国最后尚存的人造丝制造商。像许多航空航天供应商一样,它受到国防采购中的削减的影响,并计划删除航空航天级人造丝的生产。目前,生产正在继续进行生命类型购买的订单。这些命令将在1996年底之前完成,届时,持续灯丝rayon的国内来源将消失。
浏览报告后,您将在“您的体验”容器中发现 Experience² 趋势如何支持数字连续性,这是民用航空的事实标准。然后,您将进入“物联网经济”趋势,探索低地球轨道上的新卫星星座如何提供全新服务,以改善全球行业领导者或全球部署军队的供应链。我邀请您通过访问我们的应用创新交流空间之一来发现可用的相关演示。最后,为什么不了解北约如何展示“数据共享即关怀”趋势,以管理复杂的国际生态系统中的海量和多样性数据,从而改善协作、标准并提取数据价值呢?当然,这些趋势只是本报告中包含的 37 种趋势中的三种!