预期效益 按需生产硬件的能力将直接降低成本和风险,因为可以在打印所需的时间内获得所需的精确部件或工具。ISM 是实现太空制造设施的第一步,而太空制造设施是任何深空探索任务的关键支持组件。此外,按需制造电子设备的可用性是 NASA 未来太空和行星探险的关键要素。电子设备(例如传感器、通信基础设施(电缆)、印刷储能设备和发电元件)都需要在轨道或地外栖息地环境中按需制造,以更换故障组件或在长期、独立于地球的任务中制造新系统。未来在抵达之前进行的装备和自主设置工作将有利于长期任务。能够制造大多数基础设施将是人类在其他世界可持续存在的关键。NASA ISM 项目利用合作协议通知 (CAN) 和小型企业创新研究 (SBIR) 奖等机制与行业密切合作,以利用快速的技术进步。这将刺激该地区的陆地经济,同时利用有限的 NASA 资源专注于将这些技术应用于太空环境。
•致俄亥俄州立大学的电子显微镜与分析中心(CEMAS)的研究人员(CEMAS)。•支持空间的光学晶体是在Redwire的工业结晶设施(ICF)上制造的国际空间站(ISF)。•空间制造的光学晶体可以改善激光系统性能,因为由于空间制造过程,由于更少的夹杂物和缺陷,它们具有较高的激光损伤阈值。•出售了两克空间制造的晶体。•大约价值为每公斤200万美元。
执行摘要 2022 年 9 月 9 日,副总统卡马拉·哈里斯在德克萨斯州休斯顿的约翰逊航天中心召开了拜登-哈里斯政府第二次国家太空委员会会议。本次会议的重点是推进政府的优先事项,包括扩大空间科学、技术、工程和数学 (STEM) 教育和劳动力、载人太空探索以及商业新型太空活动规则。为了充分利用太空的潜力,委员会成员强调需要发展、多样化和加强我国与太空相关的产业和劳动力。大家一致同意,美国国家航空航天局 (NASA)、国防部 (DOD) 和商务部 (DOC) 将在 2022 年 9 月 9 日起的 180 天内制定建议,确保将太空部门纳入联邦计划,例如“美国制造业 1”,以加速国家在制造太空技术方面的能力,同时提高产能以满足太空工业基地 (SIB) 不断增长的劳动力需求。本报告重点关注五个领域,包括 14 项可供 NASA、DOD、DOC 和其他联邦部门和机构采取行动的建议。实施后,这些建议将有助于加深对现有基础设施的了解,并确定太空制造的现有能力和未来需求。Covid-19 实体将支持并在必要时在国内和国际上建立联邦部门和机构、行业、私营部门组织和学术界之间的新伙伴关系。利益相关者将孵化和加速太空制造创业,同时进一步协调当前和未来的联邦投资,以支持太空制造技术需求。报告最后提出了一些建议,以发展和加强各种背景的人进入太空制造职业的道路。本报告还包括:
a Airbus Defence and Space GmbH, Airbus Forbus of 1 28199 Bremen, Germany b Deutsches Forchs Senter Cünstelligez (DFKI) GumbH - Robert-Strast 1, Robert-Strases 1, Robert-Strases 1, 28359 Bremen, Germany c Space Applications Services NV, LeuvenSest road 325, Steves-Wolrows, 1932年,比利时D GMV Aerospace&Defense Medrid,请致电Isaac Ter。 28760,西班牙E Isicace -Space B.V.中的创新解决方案,Motoran Road 23,Delft 2623 CR,荷兰F EASN Technologces BVBA BVBA,Patani Str Airbus Airbus Defense and Space SAS,Cosmonuts 31 Rue,31402 Toulous Cedex4,Toulous Cedex4,Frank Gmvis Skysoft Skysoft Sakysoft Sa,Sa,Av。D.JOO II批次1.17.02,Tarre Fernname 7°,Lisboa 1998025,葡萄牙I Sener Aerospatic SA,Avda。Sugazarts 56,Las Arenas 48930,西班牙J空客防御和太空有限公司,Gunnels Wood Rd,SG1 2SS 2SS Steventh,英国。传统上,卫星和其他特定空间的组装(例如天线,航天器等)是在地球上建立的,然后被播出到轨道上。新方法使用机器人技术,自主权和模态立即在轨制造和组装上。优势是许多排名的frome实际上是无限的总体量和设计,或者大型卫星天线到数值选项,可大量的基础设施大型结构和模块化保存站。此外,空间制造和假设(ISMA)技术能够升级,修复或外部航天器和卫星,从而促进therouigh-play-play-play模型的空间。该期间项目正在追求一个概念,其中正在为卫星制造和组装以及对接和加油实验开发轨道演示者。本文描述了开发的背景,Peraspera构建块技术Esrocos(欧洲太空机器人控制和操作系统),ERGO(欧洲机器人目标自主控制器)和使用的Infuse(数据融合),使用的测试设置,演示器的测试设置和第一个结果。成功实施和验证ISMA技术将导致产生独立的欧洲能力,使欧洲能够建立未来的轨道基础设施,并在ISMA市场上具有竞争力
6 美国国家航空航天局 (NASA),华盛顿特区 20024 通讯作者:Yupeng Chen 博士,康涅狄格大学副教授,yupeng.chen@uconn.edu 摘要 纳米材料的空间制造是一个很有前途的概念,但成功的例子有限。用于治疗输送和组织再生的受 DNA 启发的 Janus 基纳米材料 (JBN) 是通过在环境温度下在水中受控的自组装过程制造的,非常适合空间制造。我们在 Axiom-2 (Ax-2) 任务期间首次设计并完成了 JBN 的轨道生产,展示了纳米材料的空间制造的巨大前景和优势。内容纳米材料技术在治疗应用方面具有巨大的潜力,从创建模拟天然细胞外基质 (ECM) 支架的仿生支架用于组织工程到作为再生医学的 RNA 和药物的输送 1,2。目前,由于诸如纳米制造的复杂性和成本等各种问题,许多纳米技术应用并不适合生物医学应用。将这些工艺扩大到商业用途可能具有挑战性,并且很难获得一致的结果,从而限制了它们的可重复性。另一方面,Janus 基纳米材料 (JBN) 的制造简单,并且可扩展性和可重复性很快。与蛋白质结晶 3 类似,由于重力,地球上 JBN 的形成受到限制,因此形成的链是不均匀的,并且药物负载效率不理想。在太空中,重力不足会影响 JBN 的沉降,这既可以增加均匀性,又可以影响其作为药物输送载体的性能。JBN 已成为解决当前治疗应用缺点的一种有前途的替代方案。这些 JBN 由模仿 DNA 碱基对的小分子组成,通过氢键和碱基堆叠自组装成纳米管。 JBN 的结构依赖于数万个 Janus 碱基单元之间的非共价相互作用,每个碱基单元的分子量低于 400 Da 4,5 。这些 JBN 通过仿生过程在室温下组装,对设备要求极低,在 JBN 过程中无需催化剂或交联剂
• Jennifer Edmunson 博士 - MSFC PM MMPACT • Frank Ledbetter 博士 - SME 空间制造 (ISM) 和 MMPACT • Mike Fiske - Jacobs/MSFC 元素主管 MMPACT/Olympus • Mike Effinger - MSFC 元素主管 MMPACT/MSCC • Tracie Prater 博士 - MSFC 基础表面栖息地 • Dave Edwards 博士 - MSFC 材料科学经理 • Mike Sansoucie - MSFC 投资组合科学家 • John Vickers - 首席技术专家 (PT) 先进制造 • Jerry Sanders - SCLT 原位资源利用 (ISRU) • Mark Hilburger 博士 - PT 挖掘、施工和舾装 • Jason Ballard - ICON Technologies 首席执行官 • Evan Jensen - ICON PM MMPACT • SEArch+ - ICON/MMPACT 月球建筑设计概念 • Bjarke Ingels Group - ICON/MMPACT 月球建筑设计概念 • Aleksandra 博士Radlinska – 宾夕法尼亚州立大学水泥和土工聚合物 • Peter Collins – 宾夕法尼亚州立大学水泥和土工聚合物
空间制造业(ISM)是一种空间活动的一种形式,它假定使用以下一个或两种关键要素的制造,加工和组装产品的可能性:a)外星原材料作为其部分或整体生产的基础:b)自然现象和条件在外星环境中发生在诸如绝Micrapravity或更高级别的外星环境中。这并不排除不使用原材料或外星条件的ISM术语的使用,而是在船上或使用太空对象的生产。因此,空间生产将与空间挖掘或使用太空资源(ISRU),轨道维修(OOS)或空间碎片的主动处置(主动碎屑清除,ADR)以及随着时间的推移将与太空中的其他活动交织在一起的活动。本文的主题是“太空产品”一词。除法律术语外,该术语最常用于基于太空中的研究的产品,该产品适应了可能引入经济流通(例如光纤,培养器器官,金属合金,现成的零件,现成的零件以及卫星和地表站的构造元素)。有关太空产品的法律考虑关注两个基本问题 - 首先,专利保护的适用性在船上进行生产的设施;其次,将位于制造或组装设施之外的太空产品的法律地位。将它们视为太空法中的独立机构有什么后果?因此,本文的目的是寻求答案的问题 - 太空生产产品的产品与文献中提出的太空产品在多大程度上?这种问题的可能解决方案是什么?关键字:空间制造,空间产品,空间对象,太空资源,专利定律。
本文件中使用的首字母缩略词和缩写定义如下。 AC-10 Aerocube-10 ACCESS 可直立空间结构装配概念 ACME 带移动炮位增材制造 AFRL 空军研究实验室 AMF 增材制造设施 AMS Alpha 磁谱仪 ANGELS 本地空间自动导航和制导实验 ARMADAS 自动可重构任务自适应数字装配系统 CHAPEA 机组人员健康和表现模拟 CNC 计算机数控 DARPA 国防高级研究计划局 Dextre 特殊用途灵巧机械手 EASE 舱外活动结构组装实验 EBW 电子束焊接 EELV 改进型一次性运载火箭 ELSA-d Astroscale 演示报废服务 ESPA EELV 二级有效载荷适配器 ETS 工程测试卫星 EVA 舱外活动 EXPRESS 加快空间站实验处理 FARE 流体采集和补给实验 FDM 熔融沉积成型 FREND 前端机器人启用近期演示 GaLORE 从风化层电解中获取的气态月氧 GEO 地球静止轨道 GOLD 通用锁存装置 HST 哈勃太空望远镜 HTP 高强度过氧化物 ISA 空间组装 ISAM 空间维修、组装和制造 ISFR 现场制造和维修 ISM 空间制造 ISRU 现场资源利用 ISS 国际空间站 ISSI 智能空间系统接口 JEM 日本实验模块 JEM-RMS 日本实验模块遥控操作系统 LANCE 用于施工和挖掘的月球附着节点 LEO 低地球轨道 LH2 液氢 LINCS 本地智能网络协作系统 LOX 液氧 LSMS 轻型表面操纵系统 MAMBA 金属先进制造 机器人辅助组装 MER 火星探测探测器
AC-10 Aerocube-10 可直立空间结构的接入组装概念 ACME 带移动炮位的增材建造 AFRL 空军研究实验室 AgMan 空间系统敏捷制造 AMF 增材制造设施 AMS Alpha 磁谱仪 ANGELS 本地空间自动导航和制导实验 ARMADAS 自动可重构任务自适应数字装配系统 BONSAI 通过高级集成实现的在轨系统总线复制品 CAVE 协作式自动驾驶汽车环境 CHAPEA 机组人员健康和表现模拟 CNC 计算机数控 DARPA 国防高级研究计划局 DeSeL 可展开结构实验室 Dextre 特殊用途灵巧机械手 EASE 舱外活动结构组装实验 EBW 电子束焊接 EELV 进化型一次性运载火箭 ELSA-d Astroscale 演示的报废服务 ESPA EELV 二级有效载荷适配器 ETS 工程测试卫星 EVA 舱外活动 EXPRESS Xpedite空间站实验处理 FARE 流体采集与补给实验 FASER 现场与空间实验机器人 FDM 熔融沉积建模 FREND 前端机器人实现近期演示 GaLORE 从风化层电解中获取的气态月球氧 GEO 地球静止轨道 GOLD 通用锁存装置 HST 哈勃太空望远镜 HTP 高强度过氧化物 ISA 空间组装 ISAAC 自主自适应看护综合系统 ISFR 现场制造与修复 ISM 空间制造 ISRU 现场资源利用 ISS 国际空间站 Issl 智能空间系统接口 JEM-EF 日本实验模块——暴露设施 JEM-RMS 日本实验模块遥控系统 LANCE 用于施工和挖掘的月球连接节点 LEO 低地球轨道 LH2 液氢 LINCS 本地智能网络协作系统 LOX 液氧
执行摘要2019年,国际太空勘探协调小组(ISECG)的技术工作组(TWG)建立了一个差距评估团队(GAT),以实地资源利用率(ISRU)为主题。ISRU GAT评估旨在检查和确定技术需求,并告知ISECG有关必须解决的技术差距,以实施预见的任务。最终,该计划打算在考虑投资是特定的勘探技术时,在确定潜在的协作机会的同时,在考虑投资是特定的探索技术时,在专家之间进行国际对话。以下各节是完整报告的主要部分的执行摘要。战略知识差距定义,以帮助确保人类探索月球的计划将取得成功,并进行了评估以确定人类勘探技术和能力的状态。发现知识和/或能力不足的地方,创建了需求的说明。从这项工作中,以三个广泛的探索主题创建了被称为战略知识差距(SKG)的列表,其中ISRU与第一个和第三个主题有关。从那时起,SKG进行了审查,并用于指导和优先考虑人类探索月球的开发和飞行活动。从这项工作中创建了一个表,该表确定了SKG对4个主要资源/功能领域和ISRU操作中的每个操作,如何/何处关闭SKG的潜在影响,以及在三相人类月球探索体系中,SKG需要关闭SKG。在这项工作开始时,对ISRU技术,能力和运营的最新批准的SKG列表(极性水资源/功能领域)(极性水,太阳能风力波动,氧气/金属来自Regolith,以及建筑和制造)以及任何ISRU MACTO的整体运作。该表的目的(表3)是允许决策者和开发人员优先级和计划关闭这些SKG,以实现所需的ISRU功能和产品。ISRU功能分解和流程图识别,提取,处理和使用空间资源将需要广泛的技术学科领域的技术,系统和能力开发。从资源识别到产品交付的端到端过程还需要大量的顺序和并行步骤。为了确保从“勘探到产品”的整个端到端序列中正确识别和解决所有技术和过程,ISRU GAP研究团队创建了两组表/图形。第一组表研究了研究中检查的三个主要ISRU功能的范围和分解:1)原位推进剂和易于消耗的生产,2)Initu构造,以及3)与ISRU衍生的原料中的空间制造。对于这三个主要的ISRU功能中的每一个,成功实施功能所需的主要功能得到了定义,以及与这些主要功能相关的亚功能(如图3、4和5所示)。这些表使决策者和开发人员能够定义,解决和跟踪过去和正在进行的活动以成功实施ISRU,但这些表并未提供有关这些功能和子功能中每个功能和子功能中的每一个可能如何影响或受到ISRU其他领域的影响。为了提供这种见解,创建了一个集成的ISRU功能流程图(图6)。该数字允许决策者和开发人员了解端到端流程中仍然存在差距或缺陷的位置,并可以更好地理解伙伴关系和招标的接口。ISRU在人类探索原地资源利用率(ISRU)中涉及任何要利用并利用本地或原地资源来创建用于机器人的产品和服务的硬件或操作,并提供人类勘探和持续存在,而不是从地球上带来。ISRU的直接目标是大大减少人类从月球和火星返回并返回的直接支出,以建立长期船员的自给自足,用于扩大科学和勘探工作,并实现空间的商业化。要将ISRU融合到任务体系结构中的最大好处,需要设计其他系统围绕ISRU衍生产品的可用性和使用。因此,ISRU是一种破坏性的能力,需要