设施和运输服务部办公空间和通用设施设计标准 (DFTS 空间标准) 为新建筑以及行政部 (DOA) 所拥有建筑的重大和小规模改建制定了室内设计空间布局标准和标准。这些标准的目的是确保所有 DOA 所拥有的建筑都能有效利用空间,同时为员工和访客提供安全舒适的环境。本文件适用于所有新设施或 DOA 所拥有设施的改建以及租赁设施的指南。它包含 DOA 建筑的规划、设计和文档编制中使用的政策和技术标准。DFTS 空间标准将与每个项目的具体建筑计划结合使用,该计划描述了所有项目信息,例如建筑空间的数量和大小,以及对机械、电气和其他操作系统的要求。DFTS 空间标准旨在确保项目的所有设计组件都集成在一起,以有利于设施运行、能源效率并充分实现其他项目标准。由于 DFTS 空间标准包含一般标准,因此 DFTS 空间标准有时可能与特定项目要求相冲突。本文件的规定并非旨在禁止使用本文件未明确规定的替代系统、方法或设备,前提是 DOA 已批准此类替代方案。
摘要 - 在未知的混乱和动态环境(例如灾难场景)中,移动机器人需要执行目标驱动导航才能找到感兴趣的人或对象,其中提供的有关这些目标的唯一信息是单个目标的图像。在本文中,我们介绍了Navformer,这是一种新颖的端到端变压器体系结构,为在未知和动态环境中为机器人目标驱动导航而开发。Navformer利用两者的优势1)变压器进行顺序数据处理和2)自我监督学习(SSL),以进行视觉表示,以推理空间布局并在动态设置中执行避免碰撞。该体系结构唯一地结合了由静态编码器组成的双视觉编码器,用于提取空间推理的不变环境特征,以及用于避免动态障碍物的一般编码器。主要的机器人导航任务分解为两个子任务以进行训练:单个机器人勘探和多机器人碰撞避免。我们执行交叉任务培训,以使学习技能转移到复杂的主要导航任务中。模拟实验表明,Navformer可以在不同的未知环境中有效浏览移动机器人,从而优于现有的最新方法。进行了全面的消融研究,以评估Navformer的主要设计选择的影响。此外,现实世界实验验证了Navformer的普遍性。索引术语 - 动态和未知环境,图像引导搜索,目标驱动机器人导航。
随着城市化进程的不断推进和城市地下空间的开发利用,地下城市综合体得到越来越广泛的应用,给人们的生活带来了极大的便利,但由于其封闭性和复杂性,如何在突发事件中避免(或减少)人员伤亡并实现人员快速安全疏散成为亟待解决的问题。本研究利用疏散仿真软件Pathfinder,基于引导模型对比分析了不同模拟疏散措施下总疏散时间、主要出口人流量的变化、关键节点拥堵情况以及人员路径选择等因素,并聚焦和确定了地下城市综合体空间布局中易出现疏散瓶颈效应的关键位置,研究了突发事件下地下城市综合体的疏散有效性,以探讨地下城市综合体的应急疏散问题。研究发现,城市综合楼楼梯出入口、超市收银台等处易出现瓶颈效应,造成严重拥堵,应作为应急疏散时重点关注的位置。对于易出现疏散瓶颈的重点位置,增加出口宽度或设置辅助疏散通道是提高疏散效率的有效措施,此外,制定合理的疏散规则也是有利于应急疏散的措施。然而,在疏散过程中,人群的从众心理对疏散效果具有不确定的(正向或负向)影响,设置导流墙在一定程度上可以提高疏散效率、减少拥堵,但导流后容易出现疏散混乱和无序现象。本研究结果对完善城市综合楼应急管理具有重要意义。
成人双胞胎神经影像学研究表明,皮质厚度(CT)和表面积(SA)受遗传信息的差异影响,导致其空间上不同的遗传模式和地形。然而,鉴于新生儿到成年人的显着皮质发育,CT和SA遗传形态的产后起源尚不清楚。为了填补这一关键的空白,这项研究始终探讨了遗传信息如何通过利用来自202个双胞胎新生儿的脑磁共振(MR)图像来差异调节CT和SA在新生儿大脑中的空间拓扑,而复杂的后环境环境因素具有最小的影响。我们利用了婴儿使用的计算工具和数据驱动的光谱聚类方法,将脑皮质构成纯粹的区域,纯粹根据CT和SA的皮质顶点的遗传相关性,并因此创建了第一个基因知情的Cortalical Parcellatial parcellatial neonatal neonatal saps saps braps braps of CT和SA的遗传相关性。两个遗传细胞图均表现出双侧对称性和分层模式,但具有不同的空间布局。对于CT,具有更紧密的遗传关系的区域表现出一个替代验(A-P)分裂,而对于SA,具有较大遗传接近的区域通常在同一叶中。某些遗传知情的区域在新生儿和成年人之间表现出很强的相似性,尽管SA的内侧表面上的相似性最为惊人,尽管它们在遗传细胞图中的总体差异总体差异。这些结果极大地提高了我们对遗传影响对皮质形态空间图案的发展的理解。
在量子处理器中,在所需量子比特之间设计并行、可编程操作的能力是构建可扩展量子信息系统的关键 1,2 。在大多数最先进的方法中,量子比特在本地交互,受与其固定空间布局相关的连接的限制。在这里,我们展示了一种具有动态、非局部连接的量子处理器,其中纠缠的量子比特在两个空间维度上以高度并行的方式在单量子比特和双量子比特操作层之间相干传输。我们的方法利用光镊捕获和传输的中性原子阵列;超精细态用于稳健的量子信息存储,激发到里德堡态用于纠缠生成 3–5 。我们使用这种架构来实现纠缠图状态的可编程生成,例如簇状态和七量子比特 Steane 码状态 6,7 。此外,我们穿梭纠缠辅助阵列,以实现具有十三个数据和六个辅助量子比特的表面代码状态 8 以及具有十六个数据和八个辅助量子比特 9 的环面上的环面代码状态。最后,我们利用这种架构实现了混合模拟 - 数字演化 2 ,并将其用于测量量子模拟中的纠缠熵 10-12 ,通过实验观察与量子多体疤痕相关的非单调纠缠动力学 13,14 。这些结果实现了长期目标,为可扩展量子处理提供了一条途径,并实现了从模拟到计量的各种应用。
1974年,罗杰·斯佩里(Roger Sperry)基于他对分裂状况的开创性研究,得出的结论是,数学几乎完全由占主导地位的左半球所维持。右半球可以执行添加的总和小于20的总和,这是完全左半球优势的唯一例外。对侧向局灶性病变的研究得出了类似的结论,除了书面复杂计算,其中需要空间能力根据计算程序的特定要求在正确位置显示位置。五十年后,新的理论和工具工具的贡献导致了更加复杂的情况,尽管大多数功能都证实了右手右手的左半球在右手中的优势,但在右半球似乎执行了几种相关的数学任务。也已经阐明了数学函数横向化的发展轨迹。此处审查了这种知识的语料库。当计算需要通用的空间处理时,右半球不仅会提供其支持,但是其作用可能非常具体。例如,正确的顶叶似乎存储了复杂算术过程所需的特定特定空间布局,并且在包含零的副本中,需要进行复杂的算术过程和诸如正确的岛的区域。也发现了两个半球之间复杂的编排,即使是简单任务:每个半球都具有其特定作用,并同意正确的结果。至于开发,数据指向基本数值过程的正确优势。在学龄前出现的图片是一种双边模式,右半球的参与程度明显更大,尤其是在非符号任务中。在这个年龄段的象征性刺激响应于左半球,腔内沟显示出左半球优势。
缩写 11 系统列表 15 1 总论 第 1 章:1 1.1 简介 第 1 章:1 1.1.1 背景 第 1 章:1 1.1.2 问题概述 第 1 章:1 1.1.3 目标和范围 第 1 章:5 1.1.4 申请人的详细信息 第 1 章:11 1.1.5 授权机构的数据 第 1 章:12 1.1.6 项目组织 第 1 章:12 1.1.7 专家团队 第 1 章:13 1.1.7.1 非放射部分 第 1 章:13 1.1.7.2 放射部分 第 1 章:14 1.1.8 阅读指南 第 1 章:14 1.2 现有许可证 第 1 章:15 1.2.1 联邦许可证 第 1 章:15 1.2.2 地区许可证 第 1 章:18 1.3 核电站的一般描述 第 1 章:18 1.3.1 工作原理 第 1 章:18 1.3.2 核部分 第 1 章:19 1.3.3 常规部分 第 1 章:21 1.4 多尔核电站的描述 第 1 章:22 1.4.1 位置 第 1 章:22 1.4.2 空间布局 第 1 章:23 1.4.3 自然环境 第 1 章:25 1.4.4 建筑环境 第 1 章:26 1.4.5 土地登记地段 第 1 章:27 1.4.6 KCD 场址布局图 第 1 章:27 1.4.7 KCD-1 和 KCD-2 第 1 章:28 1.4.7.1 反应堆建筑 (RGB) 第 1 章:28 1.4.7.2 反应堆辅助服务建筑(BAR1、BAR2) 第 1 章:29 1.4.7.3 核辅助服务大楼(GNH) 第 1 章:29 1.4.7.4 应急系统大楼(GNS) 第 1 章:29 1.4.7.5 涡轮机房(MAZ) 第 1 章:30 1.4.7.6 电气辅助服务大楼(GEH) 第 1 章:30 1.4.7.7 机械辅助服务大楼(GMH) 第 1 章:31 1.4.7.8 进水和排水管线 第 1 章:31 1.4.7.9 中央大楼 A(CGA) 第 1 章:32 1.4.7.10 应急系统大楼(DGG) 第 1 章:32 1.4.7.11 附属建筑 第 1 章:32 1.4.7.12 与 WAB 的连接 第 1 章:32 1.4.7.13 乏燃料 第 1 章:33 1.4.7.14 保护水平 第 1 章:33 1.5 对 KCD-1 和 KCD-2 系统的修改 第 1 章:33 1.5.1 项目前的变化 第 1 章:33 1.5.2 与项目相关的变化 第 1 章:35 1.6 项目 第 1 章:37 1.6.1 项目描述 第 1 章:37
缩写 11 系统列表 15 1 总论 第 1 章:1 1.1 简介 第 1 章:1 1.1.1 背景 第 1 章:1 1.1.2 问题概述 第 1 章:1 1.1.3 目标和范围 第 1 章:5 1.1.4 申请人的详细信息 第 1 章:11 1.1.5 授权机构的数据 第 1 章:12 1.1.6 项目组织 第 1 章:12 1.1.7 专家团队 第 1 章:13 1.1.7.1 非放射部分 第 1 章:13 1.1.7.2 放射部分 第 1 章:14 1.1.8 阅读指南 第 1 章:14 1.2 现有许可证 第 1 章:15 1.2.1 联邦许可证 第 1 章:15 1.2.2 地区许可证 第 1 章:18 1.3 核电站的一般描述 第 1 章:18 1.3.1 工作原理 第 1 章:18 1.3.2 核部分 第 1 章:19 1.3.3 常规部分 第 1 章:21 1.4 多尔核电站的描述 第 1 章:22 1.4.1 位置 第 1 章:22 1.4.2 空间布局 第 1 章:23 1.4.3 自然环境 第 1 章:25 1.4.4 建筑环境 第 1 章:26 1.4.5 土地登记地段 第 1 章:27 1.4.6 KCD 场址布局图 第 1 章:27 1.4.7 KCD-1 和 KCD-2 第 1 章:28 1.4.7.1 反应堆建筑 (RGB) 第 1 章:28 1.4.7.2 反应堆辅助服务建筑(BAR1、BAR2) 第 1 章:29 1.4.7.3 核辅助服务大楼(GNH) 第 1 章:29 1.4.7.4 应急系统大楼(GNS) 第 1 章:29 1.4.7.5 涡轮机房(MAZ) 第 1 章:30 1.4.7.6 电气辅助服务大楼(GEH) 第 1 章:30 1.4.7.7 机械辅助服务大楼(GMH) 第 1 章:31 1.4.7.8 进水和排水管线 第 1 章:31 1.4.7.9 中央大楼 A(CGA) 第 1 章:32 1.4.7.10 应急系统大楼(DGG) 第 1 章:32 1.4.7.11 附属建筑 第 1 章:32 1.4.7.12 与 WAB 的连接 第 1 章:32 1.4.7.13 乏燃料 第 1 章:33 1.4.7.14 保护水平 第 1 章:33 1.5 对 KCD-1 和 KCD-2 系统的修改 第 1 章:33 1.5.1 项目前的变化 第 1 章:33 1.5.2 与项目相关的变化 第 1 章:35 1.6 项目 第 1 章:37 1.6.1 项目描述 第 1 章:37
缩写 11 系统列表 15 1 总论 第 1 章:1 1.1 简介 第 1 章:1 1.1.1 背景 第 1 章:1 1.1.2 问题概述 第 1 章:1 1.1.3 目标和范围 第 1 章:5 1.1.4 申请人的详细信息 第 1 章:11 1.1.5 授权机构的数据 第 1 章:12 1.1.6 项目组织 第 1 章:12 1.1.7 专家团队 第 1 章:13 1.1.7.1 非放射部分 第 1 章:13 1.1.7.2 放射部分 第 1 章:14 1.1.8 阅读指南 第 1 章:14 1.2 现有许可证 第 1 章:15 1.2.1 联邦许可证 第 1 章:15 1.2.2 地区许可证 第 1 章:18 1.3 核电站的一般描述 第 1 章:18 1.3.1 工作原理 第 1 章:18 1.3.2 核部分 第 1 章:19 1.3.3 常规部分 第 1 章:21 1.4 多尔核电站的描述 第 1 章:22 1.4.1 位置 第 1 章:22 1.4.2 空间布局 第 1 章:23 1.4.3 自然环境 第 1 章:25 1.4.4 建筑环境 第 1 章:26 1.4.5 土地登记地段 第 1 章:27 1.4.6 KCD 场址布局图 第 1 章:27 1.4.7 KCD-1 和 KCD-2 第 1 章:28 1.4.7.1 反应堆建筑 (RGB) 第 1 章:28 1.4.7.2 反应堆辅助服务建筑(BAR1、BAR2) 第 1 章:29 1.4.7.3 核辅助服务大楼(GNH) 第 1 章:29 1.4.7.4 应急系统大楼(GNS) 第 1 章:29 1.4.7.5 涡轮机房(MAZ) 第 1 章:30 1.4.7.6 电气辅助服务大楼(GEH) 第 1 章:30 1.4.7.7 机械辅助服务大楼(GMH) 第 1 章:31 1.4.7.8 进水和排水管线 第 1 章:31 1.4.7.9 中央大楼 A(CGA) 第 1 章:32 1.4.7.10 应急系统大楼(DGG) 第 1 章:32 1.4.7.11 附属建筑 第 1 章:32 1.4.7.12 与 WAB 的连接 第 1 章:32 1.4.7.13 乏燃料 第 1 章:33 1.4.7.14 保护水平 第 1 章:33 1.5 对 KCD-1 和 KCD-2 系统的修改 第 1 章:33 1.5.1 项目前的变化 第 1 章:33 1.5.2 与项目相关的变化 第 1 章:35 1.6 项目 第 1 章:37 1.6.1 项目描述 第 1 章:37
缩写 11 系统列表 15 1 总论 第 1 章:1 1.1 简介 第 1 章:1 1.1.1 背景 第 1 章:1 1.1.2 问题概述 第 1 章:1 1.1.3 目标和范围 第 1 章:5 1.1.4 申请人的详细信息 第 1 章:11 1.1.5 授权机构的数据 第 1 章:12 1.1.6 项目组织 第 1 章:12 1.1.7 专家团队 第 1 章:13 1.1.7.1 非放射部分 第 1 章:13 1.1.7.2 放射部分 第 1 章:14 1.1.8 阅读指南 第 1 章:14 1.2 现有许可证 第 1 章:15 1.2.1 联邦许可证 第 1 章:15 1.2.2 地区许可证 第 1 章:18 1.3 核电站的一般描述 第 1 章:18 1.3.1 工作原理 第 1 章:18 1.3.2 核部分 第 1 章:19 1.3.3 常规部分 第 1 章:21 1.4 多尔核电站的描述 第 1 章:22 1.4.1 位置 第 1 章:22 1.4.2 空间布局 第 1 章:23 1.4.3 自然环境 第 1 章:25 1.4.4 建筑环境 第 1 章:26 1.4.5 土地登记地段 第 1 章:27 1.4.6 KCD 场址布局图 第 1 章:27 1.4.7 KCD-1 和 KCD-2 第 1 章:28 1.4.7.1 反应堆建筑 (RGB) 第 1 章:28 1.4.7.2 反应堆辅助服务建筑(BAR1、BAR2) 第 1 章:29 1.4.7.3 核辅助服务大楼(GNH) 第 1 章:29 1.4.7.4 应急系统大楼(GNS) 第 1 章:29 1.4.7.5 涡轮机房(MAZ) 第 1 章:30 1.4.7.6 电气辅助服务大楼(GEH) 第 1 章:30 1.4.7.7 机械辅助服务大楼(GMH) 第 1 章:31 1.4.7.8 进水和排水管线 第 1 章:31 1.4.7.9 中央大楼 A(CGA) 第 1 章:32 1.4.7.10 应急系统大楼(DGG) 第 1 章:32 1.4.7.11 附属建筑 第 1 章:32 1.4.7.12 与 WAB 的连接 第 1 章:32 1.4.7.13 乏燃料 第 1 章:33 1.4.7.14 保护水平 第 1 章:33 1.5 对 KCD-1 和 KCD-2 系统的修改 第 1 章:33 1.5.1 项目前的变化 第 1 章:33 1.5.2 与项目相关的变化 第 1 章:35 1.6 项目 第 1 章:37 1.6.1 项目描述 第 1 章:37