图2。距离和方向依赖性的选择性和Cyclin D1-CDK4/6复合物的降解。(a)DTAC距离库的示意图。(b)Western印迹(WB)分析显示,在用指定的DTAC变体以指定浓度处理的U-251细胞中细胞周期蛋白D1和CDK4/6降解14小时。结果代表了三个独立实验。(c)与距离依赖性DTAC治疗后对照组相比,相对细胞周期蛋白D1,CDK4和CDK6水平的定量。显示的数据是三个独立实验的平均值±SD。(d)DTAC方向库的示意图。(e)WB分析显示,在指定浓度的U-251细胞中,用指定的方向变体(DTAC-V5至DTAC-V9)处理的U-251细胞中的细胞周期蛋白D1和CDK4/6降解,持续14小时。结果代表了三个独立实验。(f)与对照组相比,用方向依赖性DTAC进行对照组进行了相对细胞周期蛋白D1,CDK4和CDK6水平的定量。显示的数据是三个独立实验的平均值±SD。
摘要:随机电报噪声 (RTN) 通常被认为是一种麻烦,或者更确切地说,是微型半导体器件的关键可靠性挑战。然而,这种情况正在逐渐改变,因为最近的研究表明,基于 RTN 信号固有随机性的新兴应用出现在最先进的技术中,包括真正的随机数生成器和物联网硬件安全。现在,人们正在积极探索合适的材料平台和设备架构,以将这些技术从萌芽阶段带入实际应用。一个关键的挑战是设计出可以可靠地用于确定性地创建用于 RTN 生成的局部缺陷的材料系统。为了实现这一目标,我们结合传导原子力显微镜缺陷谱和统计因子隐马尔可夫模型分析,在纳米级研究了嵌入 HfO 2 堆栈的 Au 纳米晶体 (Au-NC) 中的 RTN。在堆栈上施加电压后,Au-NC 周围的非对称电场会增强。这反过来又导致当电压施加到堆栈以诱导电介质击穿时,优先在 Au-NC 附近的 HfO 2 中产生原子缺陷。由于 RTN 是由紧密间隔的原子缺陷之间的各种静电相互作用产生的,因此 Au-NC HfO 2 材料系统表现出产生 RTN 信号的固有能力。我们的研究结果还强调,多个缺陷的空间限制以及由此产生的缺陷之间的静电相互作用提供了一个动态环境,除了标准的两级 RTN 信号之外,还会导致许多复杂的 RTN 模式。在纳米尺度上获得的见解可用于优化金属纳米晶体嵌入的高 κ 堆栈和电路,以按需生成 RTN 以满足新兴随机数应用的需求。关键词:传导 AFM、电介质击穿、金属纳米晶体、氧化物缺陷、随机电报噪声