可用 SOSMAG GEO-Kompsat-2A GEO(东经 128°) 2018 10 年 NGRM EDRS-C GEO(东经 31°) 2019 10 年 NGRM Sentinel-6 LEO(1336 公里,i = 66°) 2020 7 年 NGRM MTG-I1 GEO(0°) 2022 8.5 年 ICARE-NG HOTBIRD 13F GEO(东经 13°) 2022 10 年 ICARE-NG HOTBIRD 13G GEO(东经 13°) 2022 10 年 NGRM MTG-S1 GEO(0°) 2024 8.5 年 NGRM Metop-SG A1 LEO(~830 公里,SSO) 2024 7 年 NGRM Metop-SG B1 LEO(~830 公里,SSO) 2025 7 年 NGRM MTG-I2 GEO (0°) 2025 8.5 年 MiniRMU 月球探路者月球(椭圆形) 2025 8 年 ERSA 月球门户月球(NRHO) 2025 5 年以上
WMO-ISES-COSPAR 合作 • 联合国/外空委空间科学技术委员会于 2022 年 2 月发布了关于空间天气服务的建议。COSPAR-ISES-WMO 需要领导与空间天气相关的活动,并已开始考虑。 • 2022 年 9 月,这三个组织讨论并准备了“科英布拉宣言”。NICT 作为 ISES 的代表为这项工作做出了贡献。 • NICT 还参与了 2023 年 11 月在瑞士日内瓦 WMO 总部举行的第一届国际空间天气协调论坛 (ISWCF)。
环境与气候科学部,布鲁克海文国家实验室,厄普顿,11972,美国,国家大气研究中心(NCAR),科罗拉多州,80307,美国,空间物理实验室,维克拉姆萨拉巴伊空间中心,特里凡得琅,695022,印度,物理研究
差距分析委员会发现,通过在各种战略地球和太阳轨道上扩展空间气象观测站网络,我们可以利用现有技术显著提高我们的空间天气预报能力。空间环境是一个系统的系统,也需要采用系统的方法来从主要观测站收集并发验证的测量数据、处理数据、驱动预测模型,并将产品交付给空间天气最终用户,所有这些都需要很少的延迟时间。需要制定一项长期战略来缩小观测差距,包括让联邦机构相互合作,并与商业卫星运营商和国际机构合作。还应利用新技术和能力,例如扩大运载火箭选项和共乘机会;小型卫星技术;低延迟全球卫星通信网络;开放访问数据集以及云计算和机器学习能力;以及在扩散的低地球轨道 (LEO) 及更远的地方托管有效载荷。
加上应用程序功能:• 测量硅中的吸收剂量• 体积小、质量大• 通过与智能手机或平板电脑应用程序配对的蓝牙检索数据 ‒ 在应用程序上显示当前状态 ‒ 根据需要使用飞机的 WiFi 传输到地面• 提供 2-3 级实时剂量率(吸收剂量、等效剂量和环境剂量等效率)状态:• 2018 年交付 4 台• 2019 年第一季度完成公务机的首次生产运行