宇航员 Loral O'Hara 和 Jasmin Moghbeli(从左至右)站在微重力科学手套箱前,这是国际空间站命运号实验室舱内进行生物和物理实验的研究设施。Moghbeli 在微重力科学手套箱中安装了 Flawless Photonics 公司用于在太空中拉制光纤的机器。
三种不形成孢子的微生物和一种形成孢子的微生物,均从国际空间站分离而来。使用基于深度学习的工具 - deepFRI - 我们能够对所有研究物种中接近 100% 的蛋白质编码基因进行功能注释,战胜了其他注释工具。我们的比较基因组分析突出了这五个物种的共同特征以及这些国际空间站微生物独有的特定遗传性状。蛋白质组分析反映了这些基因组模式,揭示了相似的特征。这些集体注释表明了它们对太空生活的适应,包括通过机械敏感通道蛋白来管理与微重力相关的低渗应激、增强 DNA 修复活性以抵消增强的辐射暴露,以及存在增强新陈代谢的移动遗传元素。此外,我们的研究结果表明,某些遗传特征的进化表明了潜在的致病能力,例如小分子和肽合成以及 ATP 依赖性转运蛋白。这些特征是国际空间站微生物所独有的,进一步证实了以前的报告,解释了为什么暴露在太空条件下的微生物表现出增强的抗生素耐药性和致病性。结论:我们的研究结果表明,我们研究的从国际空间站分离出来的微生物已经适应了太空生活。机械敏感通道蛋白、增强的 DNA 修复活性以及金属肽酶和新型 S 层氧化还原酶等证据表明,这些不同的微生物之间存在趋同适应,可能在微生物群落的背景下相互补充。促进适应国际空间站环境的共同基因可能使未来太空任务所需的基本生物分子得以生物生产,或者如果这些微生物构成健康风险,则可作为潜在的药物靶点。 54
它是太空中最大的人造结构,于 1998 年发射升空。它作为宇航员的栖息地,自 2000 年以来一直有人居住。参与机构:国际空间站是美国(NASA)、俄罗斯(Roscosmos)、欧洲(ESA)、日本(JAXA)和加拿大(CSA)航天机构的联合努力。轨道:国际空间站绕地球运行的轨道距离地球约 400 公里。速度:它以每小时约 28,000 公里的速度绕地球运行,每 90 分钟绕行一周。目标:国际空间站旨在增进我们对太空和微重力的了解,支持新的科学研究,并体现国际合作。
美国宇航局及其四个航天局合作伙伴——加拿大航天局 (CSA)、欧洲航天局 (ESA)、日本宇宙航空研究开发机构 (JAXA) 和俄罗斯国家航天公司“Roscosmos”——在二十多年的载人空间站运行期间进行了数千次太空实验,并吸引了数千万学生参与。空间站上的技术演示和开发推动了最先进的应用,对地球和太空都有好处。空间站上部署的气候传感器验证了气候模型,并提供了有关地球不断变化的气候环境的大量新信息,而空间站上的空间科学仪器则增进了我们对中子星和暗物质等现象的认识。空间站机组人员也是实验的重要组成部分,他们自愿作为测试对象,研究人类对微重力生活和工作的适应性。如果不继续进行这些长期的演示和人车联合系统实验,人类对太阳系的探索将是不可能的。
• 联盟号 70S 脱离 • SpaceX CRS-30 脱离 • SpaceX Crew-8 重新定位(启用 CFT 对接) • RS EVA 62 • 波音机组飞行测试(CFT) • 进步 86 脱离 • 进步 88 发射/对接 • 美国 EVA(RFG、ERDC R&R、IROSA 准备) • 诺斯罗普·格鲁曼 CRS-20 脱离 • 诺斯罗普·格鲁曼 CRS-21 发射 • 进步 87P 脱离 • 进步 89P 发射/对接 • SpaceX Crew-9 发射/对接 • SpaceX Crew-8 脱离 • 联盟号 72S 发射/对接 • 联盟号 71S 脱离
摘要:过去已经研究了细菌的生长和行为,但是尽管对无数过程的影响,包括生物膜形成,但对船员健康的影响很少,但几乎没有将重点引向细胞大小。分析了在国际空间站(ISS)上培养在不同材料和媒体上培养的铜绿假单胞菌的特征上清液等分试样,作为太空生物膜项目的一部分。在该实验中,铜绿假单胞菌是在微重力的(与地球对照匹配的)中生长的,在改良的人工尿液培养基(Maumg-high Pi)或补充了KNO 3的LB Lennox中,并评估了其在六种不同材料上的生物膜形成。在孵育一二,两天和三天后,ISS船员通过固定在多聚甲醛中终止了实验的子集,并在此处介绍了上清液的等分试样进行浮游细胞尺寸研究。通过在油浸入下的相对造影显微镜,moticam 10+数码相机和斐济图像分析程序下使用相对造影显微镜,获得了飞行后的测量。统计比较,以确定使用Kruskal – Wallis和Dunn检验的哪些治疗方法在细胞尺寸上产生了显着差异。在LBK和Maumg-High Pi中,培养物中存在的材料存在统计学上的显着差异。与此一起,数据还按重力条件,培养基和孵育天数分组。总而言之,在微重力上生长的培养物上观察到较小的细胞,并且细胞大小随孵育时间的函数和培养物的生长而变化。在微重力中培养的浮游细胞的比较显示细胞长度降低(根据材料,从4%到10%)和直径(根据材料,根据材料的1%到10%)就其匹配的地球对照组而言,需要注意的是,在给定时间,培养物可能在其生长曲线上可能在不同的生长曲线上处于不同的位置。我们在此处描述了这些变化,以及在机组人员健康和潜在应用方面对人类太空旅行的可能影响。
2023 年,国际空间站迎来了运行 25 周年。在过去的 25 年里,空间站已经变成了一个轨道实验室,拥有研究能力,使来自 109 多个国家的科学家能够在极端而独特的环境中进行 3,300 多项开创性实验。迄今为止,空间站推动的科学研究已通过太空创新带来了变革性技术,改善了地球和太空中的人类健康,支持了未来近地轨道以外探索计划的技术发展,并促进了 STEM 计划,以促进未来领导者的发展。在过去的一年里,由于飞行计划的变化和运输工具的异常,空间站上进行研究的科学资源受到了挑战,导致科学运作延迟。尽管面临这些挑战,2023 年,大约 500 项调查在空间站进行,并支持了两次私人宇航员任务。2023 年度成果亮点展示了一系列突破性的科学成就,这些成就代表了空间站和调查团队的高质量和多样化研究能力。