摘要 — 快速局部加热技术允许连接对温度敏感的材料和组件,而不会出现高温焊料回流工艺中常见的热损伤。这对于制造热膨胀系数差异较大的材料组件也很有利,不会产生弯曲或开裂。使用夹在焊料预制件之间的放热反应箔是一种很有前途的局部快速焊接工艺,因为它不需要任何外部热源。反应箔由交替堆叠的 Ni 和 Al 纳米层形成,直到达到总膜厚度。一旦使用外部电源激活薄膜,就会发生反应并释放出一定量的能量,这些能量会转移到焊料预制件上。如果这个能量足够高,焊料预制件就会熔化并确保组件材料之间的粘合。研究了施加的压力、反应膜 (RF) 厚度以及焊料和附着材料的化学成分和厚度的影响。结果表明,工艺过程中施加的压力对接头初始质量有很大影响,当压力值在 0.5 到 100 kPa 之间时,空洞率从 64% 降至 26%。这可以通过在较高压力下焊料流动性改善从而带来更好的表面润湿性并消除空洞来解释。另外,一旦焊料熔化时间增加,接头质量就会改善。当反应箔的厚度增加(额外的感应能量)或焊料、Cu 和/或 Si 的厚度减少(更少的能量消耗)时可以观察到这种关系。由于冷却速度高,与在炉中使用传统焊料回流工艺获得的结构相比,使用 RF 实现的 AuSn 接头的微观结构显示出非常细的相分布。在 100 kPa 压力下,对组装在活性金属钎焊基板上的 350 mm 厚硅二极管进行剪切试验,以评估接头的机械性能。RF 厚 60 mm,夹在两个 25 mm 厚的 96.5 Sn 3 Ag .5 Cu (SAC) 预制件之间。测试样品的空隙率约为 37%,剪切强度值超过 9.5 MPa,远高于 MIL-STD-883H 要求。最后,将工艺对组装二极管电气性能的影响与常用的焊料回流组件进行了比较,结果显示变化可以忽略不计。
摘要 渗透性测量是复合材料预浸料中排气通道有效性的有力指标。这些排气通道的有效性与加工后的复合材料层压板内的空隙率直接相关。东丽先进复合材料的目标是比较两种渗透性测试,并确定哪一种更可靠、更准确、更经济。第一种渗透性测试方法是由东丽先进复合材料的客户 Cirrus Aircraft 设计的 Cirrus 方法。第二种测试是 ASTM D8132,这是渗透性测试的标准方法。此外,东丽试图使用更可行的渗透性测试选项来研究停留时间对三种不同预浸料产品渗透性的影响。在项目的比较阶段,ASTM 和 Cirrus 测试都运行了 5 次。在这些测试中记录了不同的修改和技术,以供将来考虑如何提高测试效率。Cirrus 数据得出的平均渗透性值为 3.98 x 10 -14 m 2;而 ASTM 测试得出的平均渗透率值为 7.4 x 10 -12 m 2 。两个测试都得到了可重复的数据。Cirrus 数据的标准差为 1.5 x 10 -14 m 2 ,而 ASTM 数据的标准差为 1.8 x 10 -12 m 2 。这两个数据集之间的数量级差异被确定为每个测试的样品制备方法不同所致。还使用了定性分析来确定哪种测试更可行,这取决于设置的简易性、总运行时间、成本以及每次测试使用的材料量。与 Cirrus 测试相比,ASTM 测试的准备和进行时间平均减少了两个小时,每个样品使用的材料减少了 45 in2。准备和运行测试的成本也减少了约 3550 美元。由于运行 ASTM 测试所需的资源很少并且它已获得标准测试方法的认证,因此 ASTM 测试被确定为更高效、更可行的选择。东丽工程师和技术人员将改进方法和技术写入标准操作程序,以便更有效地运行每项测试,以供将来使用和开发。然而,由于 COVID-19 疫情,超时实验被取消,所有进一步的工作也终止了。关键词:材料工程、复合材料、预浸料、层压板、高压釜外、仅真空袋、环氧树脂、碳纤维、固化、空隙、超时、渗透性、ASTM D8132
激光粉末床熔合 (L-PBF) 使 Glenn Research Copper 84 (GRCop-84) 能够通过增材制造 (AM) 制造出低混合电流驱动发射器组件,Glenn Research Copper 84 (GRCop-84) 是一种具有高抗拉强度和导电性的 Cr 2 Nb 沉淀硬化合金。由于构建体积限制,需要对通过激光焊接连接在一起的模块化段进行 AM 制造。开发了一种夹具系统,用于对准和压缩 0.5 毫米厚的对接焊缝,用氩气保护内表面,并防止组装过程中发生变形。外部夹具和夹板对准发射器部分,同时为脉冲 1070 nm 光纤激光器提供光束通道,而内部微型千斤顶在波导段内膨胀,消除连接部分之间的高度偏移并分配氩气保护气。传导模式焊接可防止形成锁孔和光束穿透波导内部,消除飞溅并产生光滑的底部焊道。顶面的表面粗糙度为 R a =2.34 µm,底面的表面粗糙度为 R a =3.17 µm。焊缝的平均 UTS 为 476 MPa,与 900°C 5 小时热处理后的 520 MPa UTS 相似。DOI:PACS 编号:I. 简介 Glenn Research Copper 84 (GRCop-84) [1], [2] 是一种铌铬化物 (Cr 2 Nb) 8 原子%Cr、4 原子%Nb [3] 沉淀硬化合金,适用于采用激光粉末床熔合 (L-PBF) 的增材制造 (AM) [4],[5],[6],[7],[8]。 L-PBF GRCop-84 的热导率在 260 W/m∙K [5] 到 300 W/m∙K [6] 之间(OFC 的 75%-84%),电阻率为 2.5 µΩ∙cm [9],为无氧铜 (OFC) 的 140%,屈服强度为 500 MPa,打印状态下的 UTS 为 740 MPa,伸长率为 20% [4],经 450°C 热处理 (HT) 后屈服强度增加到 810 MPa,UTS 为 970 MPa,伸长率为 9%,或经 900°C HT 后屈服强度降低到 300 MPa,UTS 为 520 MPa,伸长率为 26-37% [10]。与挤压或热等静压 (HIPing) [12] 粉末固结相比,L-PBF [11] 过程中细化沉淀物尺寸可提高强度,因为 2/3 的抗拉强度来自 Orowan 机制 [13]。高抗拉强度和稳定的沉淀物可用于火箭发动机 [5],[6],[7],[8] 或聚变反应堆 [14],[15] 的高温。高热导率和与 Nd:YAG 和光纤激光器的耦合不良 [16] 增加了传统铜合金的表面粗糙度和空隙率 [17]。GRCop-84 的 L-PBF 可实现全密度(> 99.9%)[4],平均垂直侧壁粗糙度为 Ra =3-4 μm [18]。通过机械抛光 [18] 或化学机械抛光 [20],[21],AM GRCop-84 的表面粗糙度[19]降低至 Ra <~0.3 μm,在 4.6 GHz 下实现低损耗。由于 14 vol% Cr 2 Nb [7],[11] 增强了 GRCop-84 的 AM,近红外激光的低温吸收得到了改善。